4,420 research outputs found

    Suppressing disease spreading by using information diffusion on multiplex networks

    Get PDF
    Although there is always an interplay between the dynamics of information diffusion and disease spreading, the empirical research on the systemic coevolution mechanisms connecting these two spreading dynamics is still lacking. Here we investigate the coevolution mechanisms and dynamics between information and disease spreading by utilizing real data and a proposed spreading model on multiplex network. Our empirical analysis finds asymmetrical interactions between the information and disease spreading dynamics. Our results obtained from both the theoretical framework and extensive stochastic numerical simulations suggest that an information outbreak can be triggered in a communication network by its own spreading dynamics or by a disease outbreak on a contact network, but that the disease threshold is not affected by information spreading. Our key finding is that there is an optimal information transmission rate that markedly suppresses the disease spreading. We find that the time evolution of the dynamics in the proposed model qualitatively agrees with the real-world spreading processes at the optimal information transmission rate.Comment: 11 pages, 8 figure

    Coevolution of agents and networks: Opinion spreading and community disconnection

    Full text link
    We study a stochastic model for the coevolution of a process of opinion formation in a population of agents and the network which underlies their interaction. Interaction links can break when agents fail to reach an opinion agreement. The structure of the network and the distribution of opinions over the population evolve towards a state where the population is divided into disconnected communities whose agents share the same opinion. The statistical properties of this final state vary considerably as the model parameters are changed. Community sizes and their internal connectivity are the quantities used to characterize such variations.Comment: To appear in Phys. Lett.

    Promoting cooperation in social dilemmas via simple coevolutionary rules

    Full text link
    We study the evolution of cooperation in structured populations within popular models of social dilemmas, whereby simple coevolutionary rules are introduced that may enhance players abilities to enforce their strategy on the opponent. Coevolution thus here refers to an evolutionary process affecting the teaching activity of players that accompanies the evolution of their strategies. Particularly, we increase the teaching activity of a player after it has successfully reproduced, yet we do so depending on the disseminated strategy. We separately consider coevolution affecting either only the cooperators or only the defectors, and show that both options promote cooperation irrespective of the applied game. Opposite to intuitive reasoning, however, we reveal that the coevolutionary promotion of players spreading defection is, in the long run, more beneficial for cooperation than the likewise promotion of cooperators. We explain the contradictory impact of the two considered coevolutionary rules by examining the differences between resulting heterogeneities that segregate participating players, and furthermore, demonstrate that the influential individuals completely determine the final outcome of the games. Our findings are immune to changes defining the type of considered social dilemmas and highlight that the heterogeneity of players, resulting in a positive feedback mechanism, is a fundamental property promoting cooperation in groups of selfish individuals.Comment: 13 pages, 6 figures; accepted for publication in European Physical Journal

    Towards real-world complexity: an introduction to multiplex networks

    Full text link
    Many real-world complex systems are best modeled by multiplex networks of interacting network layers. The multiplex network study is one of the newest and hottest themes in the statistical physics of complex networks. Pioneering studies have proven that the multiplexity has broad impact on the system's structure and function. In this Colloquium paper, we present an organized review of the growing body of current literature on multiplex networks by categorizing existing studies broadly according to the type of layer coupling in the problem. Major recent advances in the field are surveyed and some outstanding open challenges and future perspectives will be proposed.Comment: 20 pages, 10 figure

    Optimal interdependence between networks for the evolution of cooperation

    Get PDF
    Recent research has identified interactions between networks as crucial for the outcome of evolutionary games taking place on them. While the consensus is that interdependence does promote cooperation by means of organizational complexity and enhanced reciprocity that is out of reach on isolated networks, we here address the question just how much interdependence there should be. Intuitively, one might assume the more the better. However, we show that in fact only an intermediate density of sufficiently strong interactions between networks warrants an optimal resolution of social dilemmas. This is due to an intricate interplay between the heterogeneity that causes an asymmetric strategy flow because of the additional links between the networks, and the independent formation of cooperative patterns on each individual network. Presented results are robust to variations of the strategy updating rule, the topology of interdependent networks, and the governing social dilemma, thus suggesting a high degree of universality

    The Web as an Adaptive Network: Coevolution of Web Behavior and Web Structure

    No full text
    Much is known about the complex network structure of the Web, and about behavioral dynamics on the Web. A number of studies address how behaviors on the Web are affected by different network topologies, whilst others address how the behavior of users on the Web alters network topology. These represent complementary directions of influence, but they are generally not combined within any one study. In network science, the study of the coupled interaction between topology and behavior, or state-topology coevolution, is known as 'adaptive networks', and is a rapidly developing area of research. In this paper, we review the case for considering the Web as an adaptive network and several examples of state-topology coevolution on the Web. We also review some abstract results from recent literature in adaptive networks and discuss their implications for Web Science. We conclude that adaptive networks provide a formal framework for characterizing processes acting 'on' and 'of' the Web, and offers potential for identifying general organizing principles that seem otherwise illusive in Web Scienc

    Absorbing and Shattered Fragmentation Transitions in Multilayer Coevolution

    Get PDF
    We introduce a coevolution voter model in a multilayer, by coupling a fraction of nodes across two network layers and allowing each layer to evolve according to its own topological temporal scale. When these time scales are the same the dynamics preserve the absorbing-fragmentation transition observed in a monolayer network at a critical value of the temporal scale that depends on interlayer connectivity. The time evolution equations obtained by pair approximation can be mapped to a coevolution voter model in a single layer with an effective average degree. When the two layers have different topological time scales we find an anomalous transition, named shattered fragmentation, in which the network in one layer splits into two large components in opposite states and a multiplicity of isolated nodes. We identify the growth of the number of components as a signature of this anomalous transition. We also find a critical level of interlayer coupling needed to prevent the fragmentation in a layer connected to a layer that does not fragment.Comment: 7 pages, 6 figures, last figure caption includes link to animation
    • …
    corecore