559 research outputs found

    A function space framework for structural total variation regularization with applications in inverse problems

    Get PDF
    In this work, we introduce a function space setting for a wide class of structural/weighted total variation (TV) regularization methods motivated by their applications in inverse problems. In particular, we consider a regularizer that is the appropriate lower semi-continuous envelope (relaxation) of a suitable total variation type functional initially defined for sufficiently smooth functions. We study examples where this relaxation can be expressed explicitly, and we also provide refinements for weighted total variation for a wide range of weights. Since an integral characterization of the relaxation in function space is, in general, not always available, we show that, for a rather general linear inverse problems setting, instead of the classical Tikhonov regularization problem, one can equivalently solve a saddle-point problem where no a priori knowledge of an explicit formulation of the structural TV functional is needed. In particular, motivated by concrete applications, we deduce corresponding results for linear inverse problems with norm and Poisson log-likelihood data discrepancy terms. Finally, we provide proof-of-concept numerical examples where we solve the saddle-point problem for weighted TV denoising as well as for MR guided PET image reconstruction

    Generalized linear sampling method for elastic-wave sensing of heterogeneous fractures

    Get PDF
    A theoretical foundation is developed for active seismic reconstruction of fractures endowed with spatially-varying interfacial condition (e.g.~partially-closed fractures, hydraulic fractures). The proposed indicator functional carries a superior localization property with no significant sensitivity to the fracture's contact condition, measurement errors, and illumination frequency. This is accomplished through the paradigm of the F♯F_\sharp-factorization technique and the recently developed Generalized Linear Sampling Method (GLSM) applied to elastodynamics. The direct scattering problem is formulated in the frequency domain where the fracture surface is illuminated by a set of incident plane waves, while monitoring the induced scattered field in the form of (elastic) far-field patterns. The analysis of the well-posedness of the forward problem leads to an admissibility condition on the fracture's (linearized) contact parameters. This in turn contributes toward establishing the applicability of the F♯F_\sharp-factorization method, and consequently aids the formulation of a convex GLSM cost functional whose minimizer can be computed without iterations. Such minimizer is then used to construct a robust fracture indicator function, whose performance is illustrated through a set of numerical experiments. For completeness, the results of the GLSM reconstruction are compared to those obtained by the classical linear sampling method (LSM)

    Constraint interface preconditioning for topology optimization problems

    Get PDF
    The discretization of constrained nonlinear optimization problems arising in the field of topology optimization yields algebraic systems which are challenging to solve in practice, due to pathological ill-conditioning, strong nonlinearity and size. In this work we propose a methodology which brings together existing fast algorithms, namely, interior-point for the optimization problem and a novel substructuring domain decomposition method for the ensuing large-scale linear systems. The main contribution is the choice of interface preconditioner which allows for the acceleration of the domain decomposition method, leading to performance independent of problem size.Comment: To be published in SIAM J. Sci. Com

    Variational Theory and Domain Decomposition for Nonlocal Problems

    Get PDF
    In this article we present the first results on domain decomposition methods for nonlocal operators. We present a nonlocal variational formulation for these operators and establish the well-posedness of associated boundary value problems, proving a nonlocal Poincar\'{e} inequality. To determine the conditioning of the discretized operator, we prove a spectral equivalence which leads to a mesh size independent upper bound for the condition number of the stiffness matrix. We then introduce a nonlocal two-domain variational formulation utilizing nonlocal transmission conditions, and prove equivalence with the single-domain formulation. A nonlocal Schur complement is introduced. We establish condition number bounds for the nonlocal stiffness and Schur complement matrices. Supporting numerical experiments demonstrating the conditioning of the nonlocal one- and two-domain problems are presented.Comment: Updated the technical part. In press in Applied Mathematics and Computatio

    Regularization graphs—a unified framework for variational regularization of inverse problems

    Get PDF
    We introduce and study a mathematical framework for a broad class of regularization functionals for ill-posed inverse problems: Regularization Graphs. Regularization graphs allow to construct functionals using as building blocks linear operators and convex functionals, assembled by means of operators that can be seen as generalizations of classical infimal convolution operators. This class of functionals exhaustively covers existing regularization approaches and it is flexible enough to craft new ones in a simple and constructive way. We provide well-posedness and convergence results with the proposed class of functionals in a general setting. Further, we consider a bilevel optimization approach to learn optimal weights for such regularization graphs from training data. We demonstrate that this approach is capable of optimizing the structure and the complexity of a regularization graph, allowing, for example, to automatically select a combination of regularizers that is optimal for given training data
    • …
    corecore