203 research outputs found

    A generalization of \lambda-symmetry reduction for systems of ODEs: \sigma-symmetries

    Full text link
    We consider a deformation of the prolongation operation, defined on sets of vector fields and involving a mutual interaction in the definition of prolonged ones. This maintains the "invariants by differentiation" property, and can hence be used to reduce ODEs satisfying suitable invariance conditions in a fully algorithmic way, similarly to what happens for standard prolongations and symmetries.Comment: 32 page

    Simple and collective twisted symmetries

    Full text link
    After the introduction of λ\lambda-symmetries by Muriel and Romero, several other types of so called "twisted symmetries" have been considered in the literature (their name refers to the fact they are defined through a deformation of the familiar prolongation operation); they are as useful as standard symmetries for what concerns symmetry reduction of ODEs or determination of special (invariant) solutions for PDEs and have thus attracted attention. The geometrical relation of twisted symmetries to standard ones has already been noted: for some type of twisted symmetries (in particular, λ\lambda and μ\mu-symmetries), this amounts to a certain kind of gauge transformation. In a previous review paper [G. Gaeta, "Twisted symmetries of differential equations", {\it J. Nonlin. Math. Phys.}, {\bf 16-S} (2009), 107-136] we have surveyed the first part of the developments of this theory; in the present paper we review recent developments. In particular, we provide a unifying geometrical description of the different types of twisted symmetries; this is based on the classical Frobenius reduction applied to distribution generated by Lie-point (local) symmetries.Comment: 40 pages; to appear in J. Nonlin. Math. Phys. 21 (2014), 593-62

    Twisted symmetries of differential equations

    Full text link
    We review the basic ideas lying at the foundation of the recently developed theory of twisted symmetries of differential equations, and some of its developments

    On the geometry of lambda-symmetries, and PDEs reduction

    Full text link
    We give a geometrical characterization of λ\lambda-prolongations of vector fields, and hence of λ\lambda-symmetries of ODEs. This allows an extension to the case of PDEs and systems of PDEs; in this context the central object is a horizontal one-form μ\mu, and we speak of μ\mu-prolongations of vector fields and μ\mu-symmetries of PDEs. We show that these are as good as standard symmetries in providing symmetry reduction of PDEs and systems, and explicit invariant solutions

    On the relation between standard and μ\mu-symmetries for PDEs

    Full text link
    We give a geometrical interpretation of the notion of μ\mu-prolongations of vector fields and of the related concept of μ\mu-symmetry for partial differential equations (extending to PDEs the notion of λ\lambda-symmetry for ODEs). We give in particular a result concerning the relationship between μ\mu-symmetries and standard exact symmetries. The notion is also extended to the case of conditional and partial symmetries, and we analyze the relation between local μ\mu-symmetries and nonlocal standard symmetries.Comment: 25 pages, no figures, latex. to be published in J. Phys.

    Twisted symmetries and integrable systems

    Full text link
    Symmetry properties are at the basis of integrability. In recent years, it appeared that so called "twisted symmetries" are as effective as standard symmetries in many respects (integrating ODEs, finding special solutions to PDEs). Here we discuss how twisted symmetries can be used to detect integrability of Lagrangian systems which are not integrable via standard symmetries

    Lambda and mu-symmetries

    Full text link
    Lambda-symmetries of ODEs were introduced by Muriel and Romero, and discussed by C. Muriel in her talk at SPT2001. Here we provide a geometrical characterization of lambda-prolongations, and a generalization of these -- and of lambda-symmetries -- to PDEs and systems thereof

    Symmetries of nonlinear ordinary differential equations: the modified Emden equation as a case study

    Full text link
    Lie symmetry analysis is one of the powerful tools to analyze nonlinear ordinary differential equations. We review the effectiveness of this method in terms of various symmetries. We present the method of deriving Lie point symmetries, contact symmetries, hidden symmetries, nonlocal symmetries, λ\lambda-symmetries, adjoint symmetries and telescopic vector fields of a second-order ordinary differential equation. We also illustrate the algorithm involved in each method by considering a nonlinear oscillator equation as an example. The connections between (i) symmetries and integrating factors and (ii) symmetries and integrals are also discussed and illustrated through the same example. The interconnections between some of the above symmetries, that is (i) Lie point symmetries and λ\lambda-symmetries and (ii) exponential nonlocal symmetries and λ\lambda-symmetries are also discussed. The order reduction procedure is invoked to derive the general solution of the second-order equation.Comment: 31 pages, To appear in the proceedings of NMI workshop on nonlinear integrable systems and their applications which was held at Centre for Nonlinear Dynamics, Tiruchirappalli, Indi

    Jacobi multipliers, non-local symmetries and nonlinear oscillators

    Get PDF
    Constants of motion, Lagrangians and Hamiltonians admitted by a family of relevant nonlinear oscillators are derived using a geometric formalism. The theory of the Jacobi last multiplier allows us to find Lagrangian descriptions and constants of the motion. An application of the jet bundle formulation of symmetries of differential equations is presented in the second part of the paper. After a short review of the general formalism, the particular case of non-local symmetries is studied in detail by making use of an extended formalism. The theory is related to some results previously obtained by Krasil'shchi, Vinogradov and coworkers. Finally the existence of non-local symmetries for such two nonlinear oscillators is proved.Comment: 20 page
    corecore