1,912 research outputs found

    Coefficient Quantization for Frames in Banach Spaces

    Get PDF
    Let (ei)(e_i) be a fundamental system of a Banach space. We consider the problem of approximating linear combinations of elements of this system by linear combinations using quantized coefficients. We will concentrate on systems which are possibly redundant. Our model for this situation will be frames in Banach spaces.Comment: 33 page

    Random Bit Quadrature and Approximation of Distributions on Hilbert Spaces

    Full text link
    We study the approximation of expectations \E(f(X)) for Gaussian random elements XX with values in a separable Hilbert space HH and Lipschitz continuous functionals f ⁣:HRf \colon H \to \R. We consider restricted Monte Carlo algorithms, which may only use random bits instead of random numbers. We determine the asymptotics (in some cases sharp up to multiplicative constants, in the other cases sharp up to logarithmic factors) of the corresponding nn-th minimal error in terms of the decay of the eigenvalues of the covariance operator of XX. It turns out that, within the margins from above, restricted Monte Carlo algorithms are not inferior to arbitrary Monte Carlo algorithms, and suitable random bit multilevel algorithms are optimal. The analysis of this problem leads to a variant of the quantization problem, namely, the optimal approximation of probability measures on HH by uniform distributions supported by a given, finite number of points. We determine the asymptotics (up to multiplicative constants) of the error of the best approximation for the one-dimensional standard normal distribution, for Gaussian measures as above, and for scalar autonomous SDEs
    corecore