117,493 research outputs found

    Optimization of Information Rate Upper and Lower Bounds for Channels with Memory

    Full text link
    We consider the problem of minimizing upper bounds and maximizing lower bounds on information rates of stationary and ergodic discrete-time channels with memory. The channels we consider can have a finite number of states, such as partial response channels, or they can have an infinite state-space, such as time-varying fading channels. We optimize recently-proposed information rate bounds for such channels, which make use of auxiliary finite-state machine channels (FSMCs). Our main contribution in this paper is to provide iterative expectation-maximization (EM) type algorithms to optimize the parameters of the auxiliary FSMC to tighten these bounds. We provide an explicit, iterative algorithm that improves the upper bound at each iteration. We also provide an effective method for iteratively optimizing the lower bound. To demonstrate the effectiveness of our algorithms, we provide several examples of partial response and fading channels, where the proposed optimization techniques significantly tighten the initial upper and lower bounds. Finally, we compare our results with an improved variation of the \emph{simplex} local optimization algorithm, called \emph{Soblex}. This comparison shows that our proposed algorithms are superior to the Soblex method, both in terms of robustness in finding the tightest bounds and in computational efficiency. Interestingly, from a channel coding/decoding perspective, optimizing the lower bound is related to increasing the achievable mismatched information rate, i.e., the information rate of a communication system where the decoder at the receiver is matched to the auxiliary channel, and not to the original channel.Comment: Submitted to IEEE Transactions on Information Theory, November 24, 200

    CHANNEL CODING TECHNIQUES FOR A MULTIPLE TRACK DIGITAL MAGNETIC RECORDING SYSTEM

    Get PDF
    In magnetic recording greater area) bit packing densities are achieved through increasing track density by reducing space between and width of the recording tracks, and/or reducing the wavelength of the recorded information. This leads to the requirement of higher precision tape transport mechanisms and dedicated coding circuitry. A TMS320 10 digital signal processor is applied to a standard low-cost, low precision, multiple-track, compact cassette tape recording system. Advanced signal processing and coding techniques are employed to maximise recording density and to compensate for the mechanical deficiencies of this system. Parallel software encoding/decoding algorithms have been developed for several Run-Length Limited modulation codes. The results for a peak detection system show that Bi-Phase L code can be reliably employed up to a data rate of 5kbits/second/track. Development of a second system employing a TMS32025 and sampling detection permitted the utilisation of adaptive equalisation to slim the readback pulse. Application of conventional read equalisation techniques, that oppose inter-symbol interference, resulted in a 30% increase in performance. Further investigation shows that greater linear recording densities can be achieved by employing Partial Response signalling and Maximum Likelihood Detection. Partial response signalling schemes use controlled inter-symbol interference to increase recording density at the expense of a multi-level read back waveform which results in an increased noise penalty. Maximum Likelihood Sequence detection employs soft decisions on the readback waveform to recover this loss. The associated modulation coding techniques required for optimised operation of such a system are discussed. Two-dimensional run-length-limited (d, ky) modulation codes provide a further means of increasing storage capacity in multi-track recording systems. For example the code rate of a single track run length-limited code with constraints (1, 3), such as Miller code, can be increased by over 25% when using a 4-track two-dimensional code with the same d constraint and with the k constraint satisfied across a number of parallel channels. The k constraint along an individual track, kx, can be increased without loss of clock synchronisation since the clocking information derived by frequent signal transitions can be sub-divided across a number of, y, parallel tracks in terms of a ky constraint. This permits more code words to be generated for a given (d, k) constraint in two dimensions than is possible in one dimension. This coding technique is furthered by development of a reverse enumeration scheme based on the trellis description of the (d, ky) constraints. The application of a two-dimensional code to a high linear density system employing extended class IV partial response signalling and maximum likelihood detection is proposed. Finally, additional coding constraints to improve spectral response and error performance are discussed.Hewlett Packard, Computer Peripherals Division (Bristol

    On the capacity and normalisation of ISI channels

    Get PDF
    [Abstract]: We investigate the capacity of various ISI channels with additive white Gaussian noise. Previous papers showed a minimum Eb/N0 of −4.6 dB, 3 dB below the capacity of a flat channel, is obtained using the water-pouring capacity formulas for the 1 + D channel. However, these papers did not take into account that the channel power gain can be greater than unity when water-pouring is used. We present a generic power normalization method of the channel frequency response, namely peak bandwidth normalisation, to facilitate the fair capacity comparison of various ISI channels. Three types of ISI channel, i.e., adder channels, RC channels and magnetic recording channels, are examined. By using our channel power gain normalization, the capacity curves of these ISI channels are shown

    Cyclic-Coded Integer-Forcing Equalization

    Full text link
    A discrete-time intersymbol interference channel with additive Gaussian noise is considered, where only the receiver has knowledge of the channel impulse response. An approach for combining decision-feedback equalization with channel coding is proposed, where decoding precedes the removal of intersymbol interference. This is accomplished by combining the recently proposed integer-forcing equalization approach with cyclic block codes. The channel impulse response is linearly equalized to an integer-valued response. This is then utilized by leveraging the property that a cyclic code is closed under (cyclic) integer-valued convolution. Explicit bounds on the performance of the proposed scheme are also derived

    Joint semi-blind detection and channel estimation in space-frequency trellis coded MIMO-OFDM

    Get PDF

    Performance evaluation of hybrid ARQ schemes of 3GPP LTE OFDMA system

    Get PDF

    On the capacity and normalisation of ISI channels

    Get PDF
    [Abstract]: We investigate the capacity of various ISI channels with additive white Gaussian noise. Previous papers showed a minimum Eb/N0 of −4.6 dB, 3 dB below the capacity of a flat channel, is obtained using the water-pouring capacity formulas for the 1 + D channel. However, these papers did not take into account that the channel power gain can be greater than unity when water-pouring is used. We present a generic power normalization method of the channel frequency response, namely peak bandwidth normalisation, to facilitate the fair capacity comparison of various ISI channels. Three types of ISI channel, i.e., adder channels, RC channels and magnetic recording channels, are examined. By using our channel power gain normalization, the capacity curves of these ISI channels are shown

    Interference-Mitigating Waveform Design for Next-Generation Wireless Systems

    No full text
    A brief historical perspective of the evolution of waveform designs employed in consecutive generations of wireless communications systems is provided, highlighting the range of often conflicting demands on the various waveform characteristics. As the culmination of recent advances in the field the underlying benefits of various Multiple Input Multiple Output (MIMO) schemes are highlighted and exemplified. As an integral part of the appropriate waveform design, cognizance is given to the particular choice of the duplexing scheme used for supporting full-duplex communications and it is demonstrated that Time Division Duplexing (TDD) is substantially outperformed by Frequency Division Duplexing (FDD), unless the TDD scheme is combined with further sophisticated scheduling, MIMOs and/or adaptive modulation/coding. It is also argued that the specific choice of the Direct-Sequence (DS) spreading codes invoked in DS-CDMA predetermines the properties of the system. It is demonstrated that a specifically designed family of spreading codes exhibits a so-called interference-free window (IFW) and hence the resultant system is capable of outperforming its standardised counterpart employing classic Orthogonal Variable Spreading Factor (OVSF) codes under realistic dispersive channel conditions, provided that the interfering multi-user and multipath components arrive within this IFW. This condition may be ensured with the aid of quasisynchronous adaptive timing advance control. However, a limitation of the system is that the number of spreading codes exhibiting a certain IFW is limited, although this problem may be mitigated with the aid of novel code design principles, employing a combination of several spreading sequences in the time-frequency and spatial-domain. The paper is concluded by quantifying the achievable user load of a UTRA-like TDD Code Division Multiple Access (CDMA) system employing Loosely Synchronized (LS) spreading codes exhibiting an IFW in comparison to that of its counterpart using OVSF codes. Both system's performance is enhanced using beamforming MIMOs

    Graph-Based Decoding in the Presence of ISI

    Full text link
    We propose an approximation of maximum-likelihood detection in ISI channels based on linear programming or message passing. We convert the detection problem into a binary decoding problem, which can be easily combined with LDPC decoding. We show that, for a certain class of channels and in the absence of coding, the proposed technique provides the exact ML solution without an exponential complexity in the size of channel memory, while for some other channels, this method has a non-diminishing probability of failure as SNR increases. Some analysis is provided for the error events of the proposed technique under linear programming.Comment: 25 pages, 8 figures, Submitted to IEEE Transactions on Information Theor
    corecore