43 research outputs found

    HDTV transmission format conversion and migration path

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1997.Includes bibliographical references (leaves 77-79).by Lon E. Sunshine.Ph.D

    Video object segmentation for future multimedia applications

    Get PDF
    An efficient representation of two-dimensional visual objects is specified by an emerging audiovisual compression standard known as MPEG-4. It incorporates the advantages of segmentation-based video compression (whereby objects are encoded independently, facilitating content-based functionalities), and also the advantages of more traditional block-based approaches (such as low delay and compression efficiency). What is not specified, however, is the method of extracting semantic objects from a scene corresponding to a video segmentation task. An accurate, robust and flexible solution to this is essential to enable the future multimedia applications possible with MPEG-4. Two categories of video segmentation approaches can be identified: supervised and unsupervised. A representative set of unsupervised approaches is discussed. These approaches are found to be suitable for real-time MPEG-4 applications. However, they are not suitable for off-line applications which require very accurate segmentations of entire semantic objects. This is because an automatic segmentation process cannot solve the ill-posed problem of extracting semantic meaning from a scene. Supervised segmentation incorporates user interaction so that semantic objects in a scene can be defined. A representative set of supervised approaches with greater or lesser degrees of interaction is discussed. Three new approaches to the problem, each more sophisticated than the last, are presented by the author. The most sophisticated is an object-based approach in which an automatic segmentation and tracking algorithm is used to perform a segmentation of a scene in terms of the semantic objects defined by the user. The approach relies on maximum likelihood estimation of the parameters of mixtures of multimodal multivariate probability distribution functions. The approach is an enhanced and modified version of an existing approach yielding more sophisticated object modelling. The segmentation results obtained are comparable to those of existing approaches and in many cases better. It is concluded that the author’s approach is ideal as a content extraction tool for future off-line MPEG-4 applications

    Object-based video representations: shape compression and object segmentation

    Get PDF
    Object-based video representations are considered to be useful for easing the process of multimedia content production and enhancing user interactivity in multimedia productions. Object-based video presents several new technical challenges, however. Firstly, as with conventional video representations, compression of the video data is a requirement. For object-based representations, it is necessary to compress the shape of each video object as it moves in time. This amounts to the compression of moving binary images. This is achieved by the use of a technique called context-based arithmetic encoding. The technique is utilised by applying it to rectangular pixel blocks and as such it is consistent with the standard tools of video compression. The blockbased application also facilitates well the exploitation of temporal redundancy in the sequence of binary shapes. For the first time, context-based arithmetic encoding is used in conjunction with motion compensation to provide inter-frame compression. The method, described in this thesis, has been thoroughly tested throughout the MPEG-4 core experiment process and due to favourable results, it has been adopted as part of the MPEG-4 video standard. The second challenge lies in the acquisition of the video objects. Under normal conditions, a video sequence is captured as a sequence of frames and there is no inherent information about what objects are in the sequence, not to mention information relating to the shape of each object. Some means for segmenting semantic objects from general video sequences is required. For this purpose, several image analysis tools may be of help and in particular, it is believed that video object tracking algorithms will be important. A new tracking algorithm is developed based on piecewise polynomial motion representations and statistical estimation tools, e.g. the expectationmaximisation method and the minimum description length principle

    Motion compensation and very low bit rate video coding

    Get PDF
    Recently, many activities of the International Telecommunication Union (ITU) and the International Standard Organization (ISO) are leading to define new standards for very low bit-rate video coding, such as H.263 and MPEG-4 after successful applications of the international standards H.261 and MPEG-1/2 for video coding above 64kbps. However, at very low bit-rate the classic block matching based DCT video coding scheme suffers seriously from blocking artifacts which degrade the quality of reconstructed video frames considerably. To solve this problem, a new technique in which motion compensation is based on dense motion field is presented in this dissertation. Four efficient new video coding algorithms based on this new technique for very low bit-rate are proposed. (1) After studying model-based video coding algorithms, we propose an optical flow based video coding algorithm with thresh-olding techniques. A statistic model is established for distribution of intensity difference between two successive frames, and four thresholds are used to control the bit-rate and the quality of reconstructed frames. It outperforms the typical model-based techniques in terms of complexity and quality of reconstructed frames. (2) An efficient algorithm using DCT coded optical flow. It is found that dense motion fields can be modeled as the first order auto-regressive model, and efficiently compressed with DCT technique, hence achieving very low bit-rate and higher visual quality than the H.263/TMN5. (3) A region-based discrete wavelet transform video coding algorithm. This algorithm implements dense motion field and regions are segmented according to their content significance. The DWT is applied to residual images region by region, and bits are adaptively allocated to regions. It improves the visual quality and PSNR of significant regions while maintaining low bit-rate. (4) A segmentation-based video coding algorithm for stereo sequence. A correlation-feedback algorithm with Kalman filter is utilized to improve the accuracy of optical flow fields. Three criteria, which are associated with 3-D information, 2-D connectivity and motion vector fields, respectively, are defined for object segmentation. A chain code is utilized to code the shapes of the segmented objects. it can achieve very high compression ratio up to several thousands
    corecore