77,360 research outputs found

    Surface code compilation via edge-disjoint paths

    Full text link
    We provide an efficient algorithm to compile quantum circuits for fault-tolerant execution. We target surface codes, which form a 2D grid of logical qubits with nearest-neighbor logical operations. Embedding an input circuit's qubits in surface codes can result in long-range two-qubit operations across the grid. We show how to prepare many long-range Bell pairs on qubits connected by edge-disjoint paths of ancillas in constant depth that can be used to perform these long-range operations. This forms one core part of our Edge-Disjoint Paths Compilation (EDPC) algorithm, by easily performing many parallel long-range Clifford operations in constant depth. It also allows us to establish a connection between surface code compilation and several well-studied edge-disjoint paths problems. Similar techniques allow us to perform non-Clifford single-qubit rotations far from magic state distillation factories. In this case, we can easily find the maximum set of paths by a max-flow reduction, which forms the other major part of EDPC. EDPC has the best asymptotic worst-case performance guarantees on the circuit depth for compiling parallel operations when compared to related compilation methods based on swaps and network coding. EDPC also shows a quadratic depth improvement over sequential Pauli-based compilation for parallel rotations requiring magic resources. We implement EDPC and find significantly improved performance for circuits built from parallel cnots, and for circuits which implement the multi-controlled XX gate.Comment: 48 pages, 20 figures. Published version in PRX Quantum. Includes new comparison table, tightened Theorem 3.3/3.4, and source cod

    Macroscopically distinct quantum superposition states as a bosonic code for amplitude damping

    Get PDF
    We show how macroscopically distinct quantum superposition states (Schroedinger cat states) may be used as logical qubit encodings for the correction of spontaneous emission errors. Spontaneous emission causes a bit flip error which is easily corrected by a standard error correction circuit. The method works arbitrarily well as the distance between the amplitudes of the superposed coherent states increases.Comment: 4 pages, 2 postscript figures, LaTeX2e, RevTeX, minor changes, 1 reference adde

    Active Topology Inference using Network Coding

    Get PDF
    Our goal is to infer the topology of a network when (i) we can send probes between sources and receivers at the edge of the network and (ii) intermediate nodes can perform simple network coding operations, i.e., additions. Our key intuition is that network coding introduces topology-dependent correlation in the observations at the receivers, which can be exploited to infer the topology. For undirected tree topologies, we design hierarchical clustering algorithms, building on our prior work. For directed acyclic graphs (DAGs), first we decompose the topology into a number of two-source, two-receiver (2-by-2) subnetwork components and then we merge these components to reconstruct the topology. Our approach for DAGs builds on prior work on tomography, and improves upon it by employing network coding to accurately distinguish among all different 2-by-2 components. We evaluate our algorithms through simulation of a number of realistic topologies and compare them to active tomographic techniques without network coding. We also make connections between our approach and alternatives, including passive inference, traceroute, and packet marking
    • …
    corecore