79 research outputs found

    Fluorescent Calcium Imaging and Subsequent In Situ Hybridization for Neuronal Precursor Characterization in Xenopus laevis

    Get PDF
    Spontaneous intracellular calcium activity can be observed in a variety of cell types and is proposed to play critical roles in a variety of physiological processes. In particular, appropriate regulation of calcium activity patterns during embryogenesis is necessary for many aspects of vertebrate neural development, including proper neural tube closure, synaptogenesis, and neurotransmitter phenotype specification. While the observation that calcium activity patterns can differ in both frequency and amplitude suggests a compelling mechanism by which these fluxes might transmit encoded signals to downstream effectors and regulate gene expression, existing population-level approaches have lacked the precision necessary to further explore this possibility. Furthermore, these approaches limit studies of the role of cell-cell interactions by precluding the ability to assay the state of neuronal determination in the absence of cell-cell contact. Therefore, we have established an experimental workflow that pairs time-lapse calcium imaging of dissociated neuronal explants with a fluorescence in situ hybridization assay, allowing the unambiguous correlation of calcium activity pattern with molecular phenotype on a single-cell level. We were successfully able to use this approach to distinguish and characterize specific calcium activity patterns associated with differentiating neural cells and neural progenitor cells, respectively; beyond this, however, the experimental framework described in this article could be readily adapted to investigate correlations between any time-series activity profile and expression of a gene or genes of interest

    Abnormal wiring of CCK<sup>+</sup> basket cells disrupts spatial information coding

    Get PDF
    The function of cortical GABAergic interneurons is largely determined by their integration into specific neural circuits, but the mechanisms controlling the wiring of these cells remain largely unknown. This is particularly true for a major population of basket cells that express the neuropeptide cholecystokinin (CCK). Here we found that the tyrosine kinase receptor ErbB4 was required for the normal integration into cortical circuits of basket cells expressing CCK and vesicular glutamate transporter 3 (VGlut3). The number of inhibitory synapses made by CCK+VGlut3+ basket cells and the inhibitory drive they exerted on pyramidal cells were reduced in conditional mice lacking ErbB4. Developmental disruption of the connectivity of these cells diminished the power of theta oscillations during exploratory behavior, disrupted spatial coding by place cells, and caused selective alterations in spatial learning and memory in adult mice. These results suggest that normal integration of CCK+ basket cells in cortical networks is key to support spatial coding in the hippocampus.Supported by grants from Fundación Alicia Koplowitz and the European Research Council (ERC-2012-StG 310021) to B.R., from the European Research Council (ERC-2011-AdG 293683) to O.M., from the Spanish G293683overnment (CONSOLIDER CSD2007-00023) and Lilly Research Awards Program to B.R. and O.M, and from the French government (ANR-10-EQX-008-1 to A.M. and LabEX BRAIN ANR-10-LABX-43 to A.F. and A.M.). O.M. and B.R. are Wellcome Trust Investigators.Peer reviewe

    Spikes, synchrony, sequences and Schistocerca's sense of smell

    Get PDF

    Phase‐amplitude coupling profiles differ in frontal and auditory cortices of bats

    Get PDF
    Neural oscillations are at the core of important computations in the mammalian brain. Interactions between oscillatory activities in different frequency bands, such as delta (1–4 Hz), theta (4–8 Hz) or gamma (>30 Hz), are a powerful mechanism for binding fundamentally distinct spatiotemporal scales of neural processing. Phase‐amplitude coupling (PAC) is one such plausible and well‐described interaction, but much is yet to be uncovered regarding how PAC dynamics contribute to sensory representations. In particular, although PAC appears to have a major role in audition, the characteristics of coupling profiles in sensory and integration (i.e. frontal) cortical areas remain obscure. Here, we address this question by studying PAC dynamics in the frontal‐auditory field (FAF; an auditory area in the bat frontal cortex) and the auditory cortex (AC) of the bat Carollia perspicillata. By means of simultaneous electrophysiological recordings in frontal and auditory cortices examining local‐field potentials (LFPs), we show that the amplitude of gamma‐band activity couples with the phase of low‐frequency LFPs in both structures. Our results demonstrate that the coupling in FAF occurs most prominently in delta/high‐gamma frequencies (1‐4/75‐100 Hz), whereas in the AC the coupling is strongest in the delta‐theta/low‐gamma (2‐8/25‐55 Hz) range. We argue that distinct PAC profiles may represent different mechanisms for neuronal processing in frontal and auditory cortices, and might complement oscillatory interactions for sensory processing in the frontal‐auditory cortex network

    Causal characterization of functional connectivity through the spread of electrically induced oscillations in the epileptic human brain

    Get PDF
    Little is known about the rules governing the spread of local entrainment within synchronized networks distributed across the brain. The assessment of the causal influences impacting information flow between two brain regions have mainly relied on confirmatory model-driven approaches (such as dynamic causal modeling and structural equation modeling) and exploratory data driven approaches (such as Granger Causality analysis). However, stimulation-driven approaches offer a unique opportunity to impact ongoing brain activity and describe the causal consequences of such manipulations, performed on a specific node of a complex cerebral network. In this project, we characterize causal functional interactions between brain regions by assessing how frequency-tuned electrical currents delivered intracranially in awaken epileptic patients enhance inter-regional synchrony between pairs of areas. To achieve this goal, we worked with an existing iEEG database from 18 medication-resistant epilepsy patients undergoing Intracortical Stimulation Mapping Procedures (ISMP) performed to causally identify and localize the epileptogenic foci, prior to neurosurgical removal. Patients are implanted with series of multi-electrodes in well-known brain regions under MRI guidance. Intracranial EEG contacts allow continuous recordings and the delivery through pairs of adjacent contacts of biphasic pulses of rhythmic Direct Electric Stimulations (DES) at a 50Hz frequency coupled to electrophysiological recordings. Measuring significant increases in gamma power ( 50Hz) observed during the stimulation period (vs. prior the stimulation), and significant increases of Phase-Locking Value (PLV) between signals recorded in the electrically stimulated regions and activity evoked in the rest of implanted regions during stimulation (vs. prior simulation), we characterize the spread of oscillatory entrainment from the stimulated region to the remaining regions, thus establishing a network of functional connectivity in the brain. By comparing this network with the one shown during resting-state, we assess how entrainment to frequency-tuned electrical currents delivered intracranially is predicted by the resting-state functional connectivity network

    Associative Memory Storage and Retrieval: Involvement of Theta Oscillations in Hippocampal Information Processing

    Get PDF
    Theta oscillations are thought to play a critical role in neuronal information processing, especially in the hippocampal region, where their presence is particularly salient. A detailed description of theta dynamics in this region has revealed not only a consortium of layer-specific theta dipoles, but also within-layer differences in the expression of theta. This complex and articulated arrangement of current flows is reflected in the way neuronal firing is modulated in time. Several models have proposed that these different theta modulators flexibly coordinate hippocampal regions, to support associative memory formation and retrieval. Here, we summarily review different approaches related to this issue and we describe a mechanism, based on experimental and simulation results, for memory retrieval in CA3 involving theta modulation

    Spatial maps and oscillations in the healthy hippocampus of Octodon degus, a natural model of sporadic Alzheimer’s disease

    Get PDF
    The Octodon degus is a South American rodent that is receiving increased attention as a potential model of aging and sporadic late-onset Alzheimer’s disease (AD). Impairments in spatial memory tasks in Octodon degus have been reported in relation to either advanced AD-like disease or hippocampal lesion, opening the way to investigate how the function of hippocampal networks affects behavior across AD stages. However, no characterization of hippocampal electrophysiology exists in this species. Here we describe in young, healthy specimens the activity of neurons and local field potential rhythms during spatial navigation tasks with and without objects. Our findings show similarities between the Octodon degus and laboratory rodents. First, place cells with characteristics similar to those found in rats and mice exist in the CA1 subfield of the Octodon degus. Second, the introduction of objects elicits novelty-related exploration and an increase in activity of CA1 cells, with location specific and unspecific components. Third, oscillations of the local field potential are organized according to their spectral content into bands similar to those found in laboratory rodents. These results suggest a common framework of underlying mechanisms, opening the way to future studies of hippocampal dysfunction in this species associated to aging and disease.Fil: Mugnaini, Matías. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Polania, Diana. Universidad de Chile; ChileFil: Díaz, Yannina Constanza. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Ezquer, Marcelo. Universidad del Desarrollo; ChileFil: Ezquer, Fernando. Universidad del Desarrollo; ChileFil: Deacon, Robert M. J.. Universidad de Chile; ChileFil: Cogram, Patricia. Universidad de Chile; Chile. University of California at Irvine; Estados UnidosFil: Kropff, Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentin
    corecore