1,781 research outputs found

    Re-proving Channel Polarization Theorems: An Extremality and Robustness Analysis

    Get PDF
    The general subject considered in this thesis is a recently discovered coding technique, polar coding, which is used to construct a class of error correction codes with unique properties. In his ground-breaking work, Ar{\i}kan proved that this class of codes, called polar codes, achieve the symmetric capacity --- the mutual information evaluated at the uniform input distribution ---of any stationary binary discrete memoryless channel with low complexity encoders and decoders requiring in the order of O(NlogN)O(N\log N) operations in the block-length NN. This discovery settled the long standing open problem left by Shannon of finding low complexity codes achieving the channel capacity. Polar coding settled an open problem in information theory, yet opened plenty of challenging problems that need to be addressed. A significant part of this thesis is dedicated to advancing the knowledge about this technique in two directions. The first one provides a better understanding of polar coding by generalizing some of the existing results and discussing their implications, and the second one studies the robustness of the theory over communication models introducing various forms of uncertainty or variations into the probabilistic model of the channel.Comment: Preview of my PhD Thesis, EPFL, Lausanne, 2014. For the full version, see http://people.epfl.ch/mine.alsan/publication

    On the Error Exponents of ARQ Channels with Deadlines

    Full text link
    We consider communication over Automatic Repeat reQuest (ARQ) memoryless channels with deadlines. In particular, an upper bound L is imposed on the maximum number of ARQ transmission rounds. In this setup, it is shown that incremental redundancy ARQ outperforms Forney's memoryless decoding in terms of the achievable error exponents.Comment: 16 pages, 6 figures, Submitted to the IEEE Trans. on Information Theor

    Polarization as a novel architecture to boost the classical mismatched capacity of B-DMCs

    Full text link
    We show that the mismatched capacity of binary discrete memoryless channels can be improved by channel combining and splitting via Ar{\i}kan's polar transformations. We also show that the improvement is possible even if the transformed channels are decoded with a mismatched polar decoder.Comment: Submitted to ISIT 201

    Achieving Marton's Region for Broadcast Channels Using Polar Codes

    Full text link
    This paper presents polar coding schemes for the 2-user discrete memoryless broadcast channel (DM-BC) which achieve Marton's region with both common and private messages. This is the best achievable rate region known to date, and it is tight for all classes of 2-user DM-BCs whose capacity regions are known. To accomplish this task, we first construct polar codes for both the superposition as well as the binning strategy. By combining these two schemes, we obtain Marton's region with private messages only. Finally, we show how to handle the case of common information. The proposed coding schemes possess the usual advantages of polar codes, i.e., they have low encoding and decoding complexity and a super-polynomial decay rate of the error probability. We follow the lead of Goela, Abbe, and Gastpar, who recently introduced polar codes emulating the superposition and binning schemes. In order to align the polar indices, for both schemes, their solution involves some degradedness constraints that are assumed to hold between the auxiliary random variables and the channel outputs. To remove these constraints, we consider the transmission of kk blocks and employ a chaining construction that guarantees the proper alignment of the polarized indices. The techniques described in this work are quite general, and they can be adopted to many other multi-terminal scenarios whenever there polar indices need to be aligned.Comment: 26 pages, 11 figures, accepted to IEEE Trans. Inform. Theory and presented in part at ISIT'1

    A General Formula for the Mismatch Capacity

    Full text link
    The fundamental limits of channels with mismatched decoding are addressed. A general formula is established for the mismatch capacity of a general channel, defined as a sequence of conditional distributions with a general decoding metrics sequence. We deduce an identity between the Verd\'{u}-Han general channel capacity formula, and the mismatch capacity formula applied to Maximum Likelihood decoding metric. Further, several upper bounds on the capacity are provided, and a simpler expression for a lower bound is derived for the case of a non-negative decoding metric. The general formula is specialized to the case of finite input and output alphabet channels with a type-dependent metric. The closely related problem of threshold mismatched decoding is also studied, and a general expression for the threshold mismatch capacity is obtained. As an example of threshold mismatch capacity, we state a general expression for the erasures-only capacity of the finite input and output alphabet channel. We observe that for every channel there exists a (matched) threshold decoder which is capacity achieving. Additionally, necessary and sufficient conditions are stated for a channel to have a strong converse. Csisz\'{a}r and Narayan's conjecture is proved for bounded metrics, providing a positive answer to the open problem introduced in [1], i.e., that the "product-space" improvement of the lower random coding bound, Cq()(W)C_q^{(\infty)}(W), is indeed the mismatch capacity of the discrete memoryless channel WW. We conclude by presenting an identity between the threshold capacity and Cq()(W)C_q^{(\infty)}(W) in the DMC case
    corecore