2,656 research outputs found

    Coding Theorem and Memory Conditions for Abstract Channels with Time Structure

    Get PDF
    In the first part of this thesis, we generalize a coding theorem and a converse of Kadota and Wyner (1972) to abstract channels with time structure. As a main contribution we prove the coding theorem for a significantly weaker condition on the channel output memory, called total ergodicity for block-i.i.d. inputs. We achieve this result mainly by introducing an alternative characterization of information rate capacity. We show that the ψ-mixing condition (asymptotic output-memorylessness), used by Kadota and Wyner, is quite restrictive, in particular for the important class of Gaussian channels. In fact, we prove that for Gaussian channels the ψ-mixing condition is equivalent to finite output memory. Moreover, we derive a weak converse for all stationary channels with time structure. Intersymbol interference as well as input constraints are taken into account in a flexible way. Due to the direct use of outer measures and a derivation of an adequate version of Feinstein’s lemma we are able to avoid the standard extension of the channel input σ-algebra and obtain a more transparent derivation. We aim at a presentation from an operational perspective and consider an abstract framework, which enables us to treat discrete- and continuous-time channels in a unified way. In the second part, we systematically analyze infinite output memory conditions for abstract channels with time structure. We exploit the connections to the rich field of strongly mixing random processes to derive a hierarchy for the nonequivalent infinite channel output memory conditions in terms of a sequence of implications. The ergodic-theoretic memory condition used in the proof of the coding theorem and the ψ-mixing condition employed by Kadota and Wyner (1972) are shown to be part of this taxonomy. In addition, we specify conditions for the channel under which memory properties of a random process are invariant when the process is passed through the channel. In the last part, we investigate cascade and integration channels with regard to mixing conditions as well as properties required in the context of the coding theorem. The results are useful to study many physically relevant channel models and allow a component-based analysis of the overall channel. We consider a number of examples including composed models and deterministic as well as random filter channels. Finally, an application of strong mixing conditions from statistical signal processing involving the Fourier transform of stationary random sequences is discussed and a list of further applications is given.Im ersten Teil der Arbeit wird ein Kodierungstheorem und ein dazugehöriges Umkehrtheorem von Kadota und Wyner (1972) fĂŒr abstrakte KanĂ€le mit Zeitstruktur verallgemeinert. Als wesentlichster Beitrag wird das Kodierungstheorem fĂŒr eine signifikant schwĂ€chere Bedingung an das KanalausgangsgedĂ€chtnis bewiesen, die sogenannte totale ErgodizitĂ€t fĂŒr block-i.i.d. Eingaben. Dieses Ergebnis wird hauptsĂ€chlich durch eine alternative Charakterisierung der InformationsratenkapazitĂ€t erreicht. Es wird gezeigt, dass die von Kadota und Wyner verwendete ψ-Mischungsbedingung (asymptotische GedĂ€chtnislosigkeit am Kanalausgang) recht einschrĂ€nkend ist, insbesondere fĂŒr die wichtige Klasse der GaußkanĂ€le. In der Tat, fĂŒr GaußkanĂ€le wird bewiesen, dass die ψ-Mischungsbedingung Ă€quivalent zu endlichem GedĂ€chtnis am Kanalausgang ist. DarĂŒber hinaus wird eine schwache Umkehrung fĂŒr alle stationĂ€ren KanĂ€le mit Zeitstruktur bewiesen. Sowohl Intersymbolinterferenz als auch EingabebeschrĂ€nkungen werden in allgemeiner und flexibler Form berĂŒcksichtigt. Aufgrund der direkten Verwendung von Ă€ußeren Maßen und der Herleitung einer angepassten Version von Feinsteins Lemma ist es möglich, auf die Standarderweiterung der σ-Algebra am Kanaleingang zu verzichten, wodurch die Darstellungen transparenter und einfacher werden. Angestrebt wird eine operationelle Perspektive. Die Verwendung eines abstrakten Modells erlaubt dabei die einheitliche Betrachtung von zeitdiskreten und zeitstetigen KanĂ€len. FĂŒr abstrakte KanĂ€le mit Zeitstruktur werden im zweiten Teil der Arbeit Bedingungen fĂŒr ein unendliches GedĂ€chtnis am Kanalausgang systematisch analysiert. Unter Ausnutzung der ZusammenhĂ€nge zu dem umfassenden Gebiet der stark mischenden zufĂ€lligen Prozesse wird eine Hierarchie in Form einer Folge von Implikationen zwischen den verschiedenen GedĂ€chtnisvarianten hergeleitet. Die im Beweis des Kodierungstheorems verwendete ergodentheoretische GedĂ€chtniseigenschaft und die ψ-Mischungsbedingung von Kadota und Wyner (1972) sind dabei Bestandteil der hergeleiteten Systematik. Weiterhin werden Bedingungen fĂŒr den Kanal spezifiziert, unter denen Eigenschaften von zufĂ€lligen Prozessen am Kanaleingang bei einer Transformation durch den Kanal erhalten bleiben. Im letzten Teil der Arbeit werden sowohl IntegrationskanĂ€le als auch Hintereinanderschaltungen von KanĂ€len in Bezug auf Mischungsbedingungen sowie weitere fĂŒr das Kodierungstheorem relevante Kanaleigenschaften analysiert. Die erzielten Ergebnisse sind nĂŒtzlich bei der Untersuchung vieler physikalisch relevanter Kanalmodelle und erlauben eine komponentenbasierte Betrachtung zusammengesetzter KanĂ€le. Es wird eine Reihe von Beispielen untersucht, einschließlich deterministischer KanĂ€le, zufĂ€lliger Filter und daraus zusammengesetzter Modelle. Abschließend werden Anwendungen aus weiteren Gebieten, beispielsweise der statistischen Signalverarbeitung, diskutiert. Insbesondere die Fourier-Transformation stationĂ€rer zufĂ€lliger Prozesse wird im Zusammenhang mit starken Mischungsbedingungen betrachtet

    Ergodic Classical-Quantum Channels: Structure and Coding Theorems

    Full text link
    We consider ergodic causal classical-quantum channels (cq-channels) which additionally have a decaying input memory. In the first part we develop some structural properties of ergodic cq-channels and provide equivalent conditions for ergodicity. In the second part we prove the coding theorem with weak converse for causal ergodic cq-channels with decaying input memory. Our proof is based on the possibility to introduce joint input-output state for the cq-channels and an application of the Shannon-McMillan theorem for ergodic quantum states. In the last part of the paper it is shown how this result implies coding theorem for the classical capacity of a class of causal ergodic quantum channels.Comment: 19 pages, no figures. Final versio

    Quantum Channels with Memory

    Full text link
    We present a general model for quantum channels with memory, and show that it is sufficiently general to encompass all causal automata: any quantum process in which outputs up to some time t do not depend on inputs at times t' > t can be decomposed into a concatenated memory channel. We then examine and present different physical setups in which channels with memory may be operated for the transfer of (private) classical and quantum information. These include setups in which either the receiver or a malicious third party have control of the initializing memory. We introduce classical and quantum channel capacities for these settings, and give several examples to show that they may or may not coincide. Entropic upper bounds on the various channel capacities are given. For forgetful quantum channels, in which the effect of the initializing memory dies out as time increases, coding theorems are presented to show that these bounds may be saturated. Forgetful quantum channels are shown to be open and dense in the set of quantum memory channels.Comment: 21 pages with 5 EPS figures. V2: Presentation clarified, references adde

    Short Packets over Block-Memoryless Fading Channels: Pilot-Assisted or Noncoherent Transmission?

    Get PDF
    We present nonasymptotic upper and lower bounds on the maximum coding rate achievable when transmitting short packets over a Rician memoryless block-fading channel for a given requirement on the packet error probability. We focus on the practically relevant scenario in which there is no \emph{a priori} channel state information available at the transmitter and at the receiver. An upper bound built upon the min-max converse is compared to two lower bounds: the first one relies on a noncoherent transmission strategy in which the fading channel is not estimated explicitly at the receiver; the second one employs pilot-assisted transmission (PAT) followed by maximum-likelihood channel estimation and scaled mismatched nearest-neighbor decoding at the receiver. Our bounds are tight enough to unveil the optimum number of diversity branches that a packet should span so that the energy per bit required to achieve a target packet error probability is minimized, for a given constraint on the code rate and the packet size. Furthermore, the bounds reveal that noncoherent transmission is more energy efficient than PAT, even when the number of pilot symbols and their power is optimized. For example, for the case when a coded packet of 168168 symbols is transmitted using a channel code of rate 0.480.48 bits/channel use, over a block-fading channel with block size equal to 88 symbols, PAT requires an additional 1.21.2 dB of energy per information bit to achieve a packet error probability of 10−310^{-3} compared to a suitably designed noncoherent transmission scheme. Finally, we devise a PAT scheme based on punctured tail-biting quasi-cyclic codes and ordered statistics decoding, whose performance are close (11 dB gap at 10−310^{-3} packet error probability) to the ones predicted by our PAT lower bound. This shows that the PAT lower bound provides useful guidelines on the design of actual PAT schemes.Comment: 30 pages, 5 figures, journa

    On Capacity Regions of Discrete Asynchronous Multiple Access Channels

    Get PDF
    A general formalization is given for asynchronous multiple access channels which admits different assumptions on delays. This general framework allows the analysis of so far unexplored models leading to new interesting capacity regions. In particular, a single letter characterization is given for the capacity region in case of 3 senders, 2 synchronous with each other and the third not synchronous with them.Comment: It has been presented in part at ISIT 2011, Saint Petersburg. This extended version is accepted for publication in Kybernetik
    • 

    corecore