32 research outputs found

    Codimensional non-Newtonian fluids

    Full text link

    Thickness and Thermal Conductivities of the Walls and Fluid Layer Effects on the Onset of Thermal Convection in a Horizontal Fluid Layer Heated from Below

    Get PDF
    The thermal boundary conditions have important effects on the hydrodynamics of a thermo‐convective fluid layer. These effects are introduced through the Biot number under the Robin type boundary conditions. The thermal conductivity and thicknesses of the walls are key properties to bridge two known ideal situations widely studied: the fluid layer bounded by two insulating walls and the fluid layer bounded by two perfect thermal conducting walls. This chapter is devoted to the physical mechanisms involved in the thermal boundary conditions, its influence on the linear stability of the fluid layer and its implications with the pattern formation. A review of very important investigations on the subject is also given. The role of the thermal conductivities and thicknesses of the walls is explained with help of curves of criticality for the thermoconvection in a horizontal Newtonian fluid layer

    Conformation constraints for efficient viscoelastic fluid simulation

    Get PDF
    The simulation of high viscoelasticity poses important computational challenges. One is the difficulty to robustly measure strain and its derivatives in a medium without permanent structure. Another is the high stiffness of the governing differential equations. Solutions that tackle these challenges exist, but they are computationally slow. We propose a constraint-based model of viscoelasticity that enables efficient simulation of highly viscous and viscoelastic phenomena. Our model reformulates, in a constraint-based fashion, a constitutive model of viscoelasticity for polymeric fluids, which defines simple governing equations for a conformation tensor. The model can represent a diverse palette of materials, spanning elastoplastic, highly viscous, and inviscid liquid behaviors. In addition, we have designed a constrained dynamics solver that extends the position-based dynamics method to handle efficiently both position-based and velocity-based constraints. We show results that range from interactive simulation of viscoelastic effects to large-scale simulation of high viscosity with competitive performance

    A Physically Consistent Implicit Viscosity Solver for SPH Fluids

    Get PDF
    In this paper, we present a novel physically consistent implicit solver for the simulation of highly viscous fluids using the Smoothed Particle Hydrodynamics (SPH) formalism. Our method is the result of a theoretical and practical in‐depth analysis of the most recent implicit SPH solvers for viscous materials. Based on our findings, we developed a list of requirements that are vital to produce a realistic motion of a viscous fluid. These essential requirements include momentum conservation, a physically meaningful behavior under temporal and spatial refinement, the absence of ghost forces induced by spurious viscosities and the ability to reproduce complex physical effects that can be observed in nature. On the basis of several theoretical analyses, quantitative academic comparisons and complex visual experiments we show that none of the recent approaches is able to satisfy all requirements. In contrast, our proposed method meets all demands and therefore produces realistic animations in highly complex scenarios. We demonstrate that our solver outperforms former approaches in terms of physical accuracy and memory consumption while it is comparable in terms of computational performance. In addition to the implicit viscosity solver, we present a method to simulate melting objects. Therefore, we generalize the viscosity model to a spatially varying viscosity field and provide an SPH discretization of the heat equation

    Turning point principle for relativistic stars

    Get PDF
    Upon specifying an equation of state, spherically symmetric steady states of the Einstein-Euler system are embedded in 1-parameter families of solutions, characterized by the value of their central redshift. In the 1960's Zel'dovich [50] and Wheeler [22] formulated a turning point principle which states that the spectral stability can be exchanged to instability and vice versa only at the extrema of mass along the mass-radius curve. Moreover the bending orientation at the extrema determines whether a growing mode is gained or lost. We prove the turning point principle and provide a detailed description of the linearized dynamics. One of the corollaries of our result is that the number of growing modes grows to infinity as the central redshift increases to infinity.Comment: 33 pages, 1 figur

    Variational Stokes: A Unified Pressure-viscosity Solver for Accurate Viscous Liquids

    Get PDF
    © ACM, 2017. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in Larionov, E., Batty, C., & Bridson, R. (2017). Variational Stokes: A Unified Pressure-viscosity Solver for Accurate Viscous Liquids. ACM Trans. Graph., 36(4), 101:1–101:11. https://doi.org/10.1145/3072959.3073628We propose a novel unsteady Stokes solver for coupled viscous and pressure forces in grid-based liquid animation which yields greater accuracy and visual realism than previously achieved. Modern fluid simulators treat viscosity and pressure in separate solver stages, which reduces accuracy and yields incorrect free surface behavior. Our proposed implicit variational formulation of the Stokes problem leads to a symmetric positive definite linear system that gives properly coupled forces, provides unconditional stability, and treats difficult boundary conditions naturally through simple volume weights. Surface tension and moving solid boundaries are also easily incorporated. Qualitatively, we show that our method recovers the characteristic rope coiling instability of viscous liquids and preserves fine surface details, while previous grid-based schemes do not. Quantitatively, we demonstrate that our method is convergent through grid refinement studies on analytical problems in two dimensions. We conclude by offering practical guidelines for choosing an appropriate viscous solver, based on the scenario to be animated and the computational costs of different methods.Natural Sciences and Engineering Research Council of Canad

    Turning Point Principle for Relativistic Stars

    Get PDF
    Upon specifying an equation of state, spherically symmetric steady states of the Einstein-Euler system are embedded in 1-parameter families of solutions, characterized by the value of their central redshift. In the 1960’s Zel’dovich (Voprosy Kosmogonii 9:157–170, 1963) and Harrison et al. (Gravitation Theory and Gravitational Collapse. The University of Chicago press, Chicago, 1965) formulated a turning point principle which states that the spectral stability can be exchanged to instability and vice versa only at the extrema of mass along the mass-radius curve. Moreover the bending orientation at the extrema determines whether a growing mode is gained or lost. We prove the turning point principle and provide a detailed description of the linearized dynamics. One of the corollaries of our result is that the number of growing modes grows to infinity as the central redshift increases to infinity
    corecore