26 research outputs found

    Codimension-two homoclinic bifurcations underlying spike adding in the Hindmarsh-Rose burster

    Full text link
    The well-studied Hindmarsh-Rose model of neural action potential is revisited from the point of view of global bifurcation analysis. This slow-fast system of three paremeterised differential equations is arguably the simplest reduction of Hodgkin-Huxley models capable of exhibiting all qualitatively important distinct kinds of spiking and bursting behaviour. First, keeping the singular perturbation parameter fixed, a comprehensive two-parameter bifurcation diagram is computed by brute force. Of particular concern is the parameter regime where lobe-shaped regions of irregular bursting undergo a transition to stripe-shaped regions of periodic bursting. The boundary of each stripe represents a fold bifurcation that causes a smooth spike-adding transition where the number of spikes in each burst is increased by one. Next, numerical continuation studies reveal that the global structure is organised by various curves of homoclinic bifurcations. In particular the lobe to stripe transition is organised by a sequence of codimension-two orbit- and inclination-flip points that occur along {\em each} homoclinic branch. Each branch undergoes a sharp turning point and hence approximately has a double-cover of the same curve in parameter space. The sharp turn is explained in terms of the interaction between a two-dimensional unstable manifold and a one-dimensional slow manifold in the singular limit. Finally, a new local analysis is undertaken using approximate Poincar\'{e} maps to show that the turning point on each homoclinic branch in turn induces an inclination flip that gives birth to the fold curve that organises the spike-adding transition. Implications of this mechanism for explaining spike-adding behaviour in other excitable systems are discussed.Comment: 32 pages, 18 figures, submitted to SIAM Journal on Applied Dynamical System

    Macro- and micro-chaotic structures in the Hindmarsh-Rose model of bursting neurons

    Get PDF
    Understanding common dynamical principles underlying an abundance of widespread brain behaviors is a pivotal challenge in the new century. The bottom-up approach to the challenge should be based on solid foundations relying on detailed and systematic understanding of dynamical functions of its basic components—neurons—modeled as plausibly within the Hodgkin-Huxley framework as phenomenologically using mathematical abstractions. Such one is the Hindmarsh-Rose (HR) model, reproducing fairly the basic oscillatory activities routinely observed in isolated biological cells and in neural networks. This explains a wide popularity of the HR-model in modern research in computational neuroscience. A challenge for the mathematics community is to provide detailed explanations of fine aspects of the dynamics, which the model is capable of, including its responses to perturbations due to network interactions. This is the main focus of the bifurcation theory exploring quantitative variations and qualitative transformations of a system in its parameter space. We will show how generic homoclinic bifurcations of equilibria and periodic orbits can imply transformations and transitions between oscillatory activity types in this and other bursting models of neurons of the Hodgkin-Huxley type. The article is focused specifically on bifurcation scenarios in neuronal models giving rise to irregular or chaotic spiking and bursting. The article demonstrates how the combined use of several state-of-the-art numerical techniques helps us confine “onion”-like regions in the parameter space, with macro-chaotic complexes as well as micro-chaotic structures occurring near spike-adding bifurcations

    Homoclinic organization in the Hindmarsh-Rose model: A three parameter study

    Get PDF
    Bursting phenomena are found in a wide variety of fast-slow systems. In this article, we consider the Hindmarsh-Rose neuron model, where, as it is known in the literature, there are homoclinic bifurcations involved in the bursting dynamics. However, the global homoclinic structure is far from being fully understood. Working in a three-parameter space, the results of our numerical analysis show a complex atlas of bifurcations, which extends from the singular limit to regions where a fast-slow perspective no longer applies. Based on this information, we propose a global theoretical description. Surfaces of codimension-one homoclinic bifurcations are exponentially close to each other in the fast-slow regime. Remarkably, explained by the specific properties of these surfaces, we show how the Hindmarsh-Rose model exhibits isolas of homoclinic bifurcations when appropriate two-dimensional slices are considered in the three-parameter space. On the other hand, these homoclinic bifurcation surfaces contain curves corresponding to parameter values where additional degeneracies are exhibited. These codimension-two bifurcation curves organize the bifurcations associated with the spike-adding process and they behave like the "spines-of-a-book, " gathering "pages" of bifurcations of periodic orbits. Depending on how the parameter space is explored, homoclinic phenomena may be absent or far away, but their organizing role in the bursting dynamics is beyond doubt, since the involved bifurcations are generated in them. This is shown in the global analysis and in the proposed theoretical scheme

    Classification of bursting patterns: A tale of two ducks

    Get PDF
    Bursting is one of the fundamental rhythms that excitable cells can generate either in response to incoming stimuli or intrinsically. It has been a topic of intense research in computational biology for several decades. The classification of bursting oscillations in excitable systems has been the subject of active research since the early 1980s and is still ongoing. As a by-product it establishes analytical and numerical foundations for studying complex temporal behaviors in multiple-timescale models of cellular activity. In this review, we first present the seminal works of Rinzel and Izhikevich in classifying bursting patterns of excitable systems. We recall a complementary mathematical classification approach by Bertram et al., and then by Golubitsky et al., which together with the Rinzel-Izhikevich proposals provide the state-of-the-art foundations to these classifications. Beyond classical approaches, we review a recent bursting example that falls outside the previous classification systems. Generalizing this example leads us to propose an extended classification, which requires the analysis of both fast and slow subsystems of an underlying slow-fast model and allows the dissection of a larger class of bursters. Namely, we provide a general framework for bursting systems with both subthreshold and superthreshold oscillations. A new class of bursters with at least two slow variables is then added, which we denote folded-node bursters, to convey the idea that the bursts are initiated or annihilated via a folded-node singularity. Key to this mechanism are so-called canard or duck orbits, organizing the underpinning excitability structure. We describe the two main families of folded-node bursters, depending upon the phase (active/spiking or silent/non-spiking) of the bursting cycle during which folded-node dynamics occurs. We classify both families and give examples of minimal systems displaying these novel bursting patterns. Finally, we provide a biophysical example by reinterpreting a generic conductance-based episodic burster as a folded-node burster, showing that the associated framework can explain its subthreshold oscillations over a larger parameter region than the fast-subsystem approach

    Parameter-sweeping techniques for temporal dynamics of neuronal systems: case study of Hindmarsh-Rose model

    Get PDF
    Background: Development of effective and plausible numerical tools is an imperative task for thorough studies of nonlinear dynamics in life science applications. Results: We have developed a complementary suite of computational tools for twoparameter screening of dynamics in neuronal models. We test a ‘brute-force’ effectiveness of neuroscience plausible techniques specifically tailored for the examination of temporal characteristics, such duty cycle of bursting, interspike interval, spike number deviation in the phenomenological Hindmarsh-Rose model of a bursting neuron and compare the results obtained by calculus-based tools for evaluations of an entire spectrum of Lyapunov exponents broadly employed in studies of nonlinear systems. Conclusions: We have found that the results obtained either way agree exceptionally well, and can identify and differentiate between various fine structures of complex dynamics and underlying global bifurcations in this exemplary model. Our future planes are to enhance the applicability of this computational suite for understanding of polyrhythmic bursting patterns and their functional transformations in small networks

    Nonlinear synchrony dynamics of neuronal bursters

    Get PDF
    We study the appearance of a novel phenomenon for coupled identical bursters: synchronized bursts where there are changes of spike synchrony within each burst. The examples we study are for normal form elliptic bursters where there is a periodic slow passage through a Bautin (codimension two degenerate Andronov-Hopf) bifurcation. This burster has a subcritical Andronov-Hopf bifurcation at the onset of repetitive spiking while the end of burst occurs via a fold limit cycle bifurcation. We study synchronization behavior of two Bautin-type elliptic bursters for a linear direct coupling scheme as well as demonstrating its presence in an approximation of gap-junction and synaptic coupling. We also find similar behaviour in system consisted of three and four Bautin-type elliptic bursters. We note that higher order terms in the normal form that do not affect the behavior of a single burster can be responsible for changes in synchrony pattern; more precisely, we find within-burst synchrony changes associated with a turning point in the spontaneous spiking frequency (frequency transition). We also find multiple synchrony changes in similar system by incorporating multiple frequency transitions. To explain the phenomenon we considered a burst-synchronized constrained model and a bifurcation analysis of the this reduced model shows the existence of the observed within-burst synchrony states. Within-burst synchrony change is also found in the system of mutually delaycoupled two Bautin-type elliptic bursters with a constant delay. The similar phenomenon is shown to exist in the mutually-coupled conductance-based Morris-Lecar neuronal system with an additional slow variable generating elliptic bursting. We also find within-burst synchrony change in linearly coupled FitzHugh-Rinzel 2 3 elliptic bursting system where the synchrony change occurs via a period doubling bifurcation. A bifurcation analysis of a burst-synchronized constrained system identifies the periodic doubling bifurcation in this case. We show emergence of spontaneous burst synchrony cluster in the system of three Hindmarsh-Rose square-wave bursters with nonlinear coupling. The system is found to change between the available cluster states depending on the stimulus. Lyapunov exponents of the burst synchrony states are computed from the corresponding variational system to probe the stability of the states. Numerical simulation also shows existence of burst synchrony cluster in the larger network of such system.Exeter Research Scholarship

    Complex oscillations with multiple timescales - Application to neuronal dynamics

    Get PDF
    The results gathered in this thesis deal with multiple time scale dynamical systems near non-hyperbolic points, giving rise to canard-type solutions, in systems of dimension 2, 3 and 4. Bifurcation theory and numerical continuation methods adapted for such systems are used to analyse canard cycles as well as canard-induced complex oscillations in three-dimensional systems. Two families of such complex oscillations are considered: mixed-mode oscillations (MMOs) in systems with two slow variables, and bursting oscillations in systems with two fast variables. In the last chapter, we present recent results on systems with two slow and two fast variables, where both MMO-type dynamics and bursting-type dynamics can arise and where complex oscillations are also organised by canard solutions. The main application area that we consider here is that of neuroscience, more precisely low-dimensional point models of neurons displaying both sub-threshold and spiking behaviour. We focus on analysing how canard objects allow to control the oscillatory patterns observed in these neuron models, in particular the crossings of excitability thresholds

    Principles for Making Half-center Oscillators and Rules for Torus Bifurcation in Neuron Models

    Get PDF
    In this modelling work, we adopted geometric slow-fast dissection and parameter continuation approach to study the following three topics: 1. Principles for making the half-center oscillator, a ubiquitous building block for many rhythm-generating neural networks. 2. Causes of a novel electrical behavior of neurons, amplitude modulation, from the view of dynamical systems; 3. Explanation and predictions for two common types of chaotic dynamics in single neuron model. To make our work as general as possible, we used and built both exemplary biologically plausible Hodgkin-Huxley type neuron models and reduced phenomenological neuron models
    corecore