28,651 research outputs found

    Neural Network architectures design by Cellular Automata evolution

    Get PDF
    4th Conference of Systemics Cybernetics and Informatics. Orlando, 23-26 July 2000The design of the architecture is a crucial step in the successful application of a neural network. However, the architecture design is basically, in most cases, a human experts job. The design depends heavily on both, the expert experience and on a tedious trial-and-error process. Therefore, the development of automatic methods to determine the architecture of feedforward neural networks is a field of interest in the neural network community. These methods are generally based on search techniques, as genetic algorithms, simulated annealing or evolutionary strategies. Most of the designed methods are based on direct representation of the parameters of the network. This representation does not allow scalability, so to represent large architectures very large structures are required. In this work, an indirect constructive encoding scheme is proposed to find optimal architectures of feed-forward neural networks. This scheme is based on cellular automata representations in order to increase the scalability of the method.Publicad

    Non-Direct Encoding Method Based on Cellular Automata to Design Neural Network Architectures

    Get PDF
    Architecture design is a fundamental step in the successful application of Feed forward Neural Networks. In most cases a large number of neural networks architectures suitable to solve a problem exist and the architecture design is, unfortunately, still a human expert’s job. It depends heavily on the expert and on a tedious trial-and-error process. In the last years, many works have been focused on automatic resolution of the design of neural network architectures. Most of the methods are based on evolutionary computation paradigms. Some of the designed methods are based on direct representations of the parameters of the network. These representations do not allow scalability; thus, for representing large architectures very large structures are required. More interesting alternatives are represented by indirect schemes. They codify a compact representation of the neural network. In this work, an indirect constructive encoding scheme is proposed. This scheme is based on cellular automata representations and is inspired by the idea that only a few seeds for the initial configuration of a cellular automaton can produce a wide variety of feed forward neural networks architectures. The cellular approach is experimentally validated in different domains and compared with a direct codification scheme.Publicad

    The Non-linear Dynamics of Meaning-Processing in Social Systems

    Full text link
    Social order cannot be considered as a stable phenomenon because it contains an order of reproduced expectations. When the expectations operate upon one another, they generate a non-linear dynamics that processes meaning. Specific meaning can be stabilized, for example, in social institutions, but all meaning arises from a horizon of possible meanings. Using Luhmann's (1984) social systems theory and Rosen's (1985) theory of anticipatory systems, I submit equations for modeling the processing of meaning in inter-human communication. First, a self-referential system can use a model of itself for the anticipation. Under the condition of functional differentiation, the social system can be expected to entertain a set of models; each model can also contain a model of the other models. Two anticipatory mechanisms are then possible: one transversal between the models, and a longitudinal one providing the modeled systems with meaning from the perspective of hindsight. A system containing two anticipatory mechanisms can become hyper-incursive. Without making decisions, however, a hyper-incursive system would be overloaded with uncertainty. Under this pressure, informed decisions tend to replace the "natural preferences" of agents and an order of cultural expectations can increasingly be shaped

    Grammars and cellular automata for evolving neural networks architectures

    Get PDF
    IEEE International Conference on Systems, Man, and Cybernetics. Nashville, TN, 8-11 October 2000The class of feedforward neural networks trained with back-propagation admits a large variety of specific architectures applicable to approximation pattern tasks. Unfortunately, the architecture design is still a human expert job. In recent years, the interest to develop automatic methods to determine the architecture of the feedforward neural network has increased, most of them based on the evolutionary computation paradigm. From this approach, some perspectives can be considered: at one extreme, every connection and node of architecture can be specified in the chromosome representation using binary bits. This kind of representation scheme is called the direct encoding scheme. In order to reduce the length of the genotype and the search space, and to make the problem more scalable, indirect encoding schemes have been introduced. An indirect scheme under a constructive algorithm, on the other hand, starts with a minimal architecture and new levels, neurons and connections are added, step by step, via some sets of rules. The rules and/or some initial conditions are codified into a chromosome of a genetic algorithm. In this work, two indirect constructive encoding schemes based on grammars and cellular automata, respectively, are proposed to find the optimal architecture of a feedforward neural network

    Evolutionary cellular configurations for designing feed-forward neural networks architectures

    Get PDF
    Proceeding of: 6th International Work-Conference on Artificial and Natural Neural Networks, IWANN 2001 Granada, Spain, June 13–15, 2001In the recent years, the interest to develop automatic methods to determine appropriate architectures of feed-forward neural networks has increased. Most of the methods are based on evolutionary computation paradigms. Some of the designed methods are based on direct representations of the parameters of the network. These representations do not allow scalability, so to represent large architectures, very large structures are required. An alternative more interesting are the indirect schemes. They codify a compact representation of the neural network. In this work, an indirect constructive encoding scheme is presented. This scheme is based on cellular automata representations in order to increase the scalability of the method
    • …
    corecore