19 research outputs found

    Digital Twins for Industry 4.0 in the 6G Era

    Full text link
    Having the Fifth Generation (5G) mobile communication system recently rolled out in many countries, the wireless community is now setting its eyes on the next era of Sixth Generation (6G). Inheriting from 5G its focus on industrial use cases, 6G is envisaged to become the infrastructural backbone of future intelligent industry. Especially, a combination of 6G and the emerging technologies of Digital Twins (DT) will give impetus to the next evolution of Industry 4.0 (I4.0) systems. This article provides a survey in the research area of 6G-empowered industrial DT system. With a novel vision of 6G industrial DT ecosystem, this survey discusses the ambitions and potential applications of industrial DT in the 6G era, identifying the emerging challenges as well as the key enabling technologies. The introduced ecosystem is supposed to bridge the gaps between humans, machines, and the data infrastructure, and therewith enable numerous novel application scenarios.Comment: Accepted for publication in IEEE Open Journal of Vehicular Technolog

    From Task Graphs to Concrete Actions: A New Task Mapping Algorithm for the Future Internet of Things

    Get PDF
    International audienceTask mapping, which basically consists of mapping a set of tasks onto a set of nodes, is a well-known problem in distributed computing research. As a particular case of distributed systems, the Internet of Things (IoT) poses a set of renewed challenges, because of its scale, heterogeneity and properties traditionally associated with wireless sensor networks (WSN), shared sensing, continous processing and real time computing. To handle IoT features, we present a formalization of the task mapping problem that captures the varying consumption of resources and various constraints (location, capabilities, QoS) in order to compute a mapping that guarantees the lifetime of the concurrent tasks inside the network and the fair allocation of tasks among the nodes. It results in a binary programming problem for which we provide an efficient heuristic that allows its resolution in polynomial time. Our experiments show that our heuristic: (i) gives solutions that are close to optimal and (ii) can be implemented on reasonably powerful Things and performed directly within the network, without requiring any centralized infrastructure

    Robust and secure resource management for automotive cyber-physical systems

    Get PDF
    2022 Spring.Includes bibliographical references.Modern vehicles are examples of complex cyber-physical systems with tens to hundreds of interconnected Electronic Control Units (ECUs) that manage various vehicular subsystems. With the shift towards autonomous driving, emerging vehicles are being characterized by an increase in the number of hardware ECUs, greater complexity of applications (software), and more sophisticated in-vehicle networks. These advances have resulted in numerous challenges that impact the reliability, security, and real-time performance of these emerging automotive systems. Some of the challenges include coping with computation and communication uncertainties (e.g., jitter), developing robust control software, detecting cyber-attacks, ensuring data integrity, and enabling confidentiality during communication. However, solutions to overcome these challenges incur additional overhead, which can catastrophically delay the execution of real-time automotive tasks and message transfers. Hence, there is a need for a holistic approach to a system-level solution for resource management in automotive cyber-physical systems that enables robust and secure automotive system design while satisfying a diverse set of system-wide constraints. ECUs in vehicles today run a variety of automotive applications ranging from simple vehicle window control to highly complex Advanced Driver Assistance System (ADAS) applications. The aggressive attempts of automakers to make vehicles fully autonomous have increased the complexity and data rate requirements of applications and further led to the adoption of advanced artificial intelligence (AI) based techniques for improved perception and control. Additionally, modern vehicles are becoming increasingly connected with various external systems to realize more robust vehicle autonomy. These paradigm shifts have resulted in significant overheads in resource constrained ECUs and increased the complexity of the overall automotive system (including heterogeneous ECUs, network architectures, communication protocols, and applications), which has severe performance and safety implications on modern vehicles. The increased complexity of automotive systems introduces several computation and communication uncertainties in automotive subsystems that can cause delays in applications and messages, resulting in missed real-time deadlines. Missing deadlines for safety-critical automotive applications can be catastrophic, and this problem will be further aggravated in the case of future autonomous vehicles. Additionally, due to the harsh operating conditions (such as high temperatures, vibrations, and electromagnetic interference (EMI)) of automotive embedded systems, there is a significant risk to the integrity of the data that is exchanged between ECUs which can lead to faulty vehicle control. These challenges demand a more reliable design of automotive systems that is resilient to uncertainties and supports data integrity goals. Additionally, the increased connectivity of modern vehicles has made them highly vulnerable to various kinds of sophisticated security attacks. Hence, it is also vital to ensure the security of automotive systems, and it will become crucial as connected and autonomous vehicles become more ubiquitous. However, imposing security mechanisms on the resource constrained automotive systems can result in additional computation and communication overhead, potentially leading to further missed deadlines. Therefore, it is crucial to design techniques that incur very minimal overhead (lightweight) when trying to achieve the above-mentioned goals and ensure the real-time performance of the system. We address these issues by designing a holistic resource management framework called ROSETTA that enables robust and secure automotive cyber-physical system design while satisfying a diverse set of constraints related to reliability, security, real-time performance, and energy consumption. To achieve reliability goals, we have developed several techniques for reliability-aware scheduling and multi-level monitoring of signal integrity. To achieve security objectives, we have proposed a lightweight security framework that provides confidentiality and authenticity while meeting both security and real-time constraints. We have also introduced multiple deep learning based intrusion detection systems (IDS) to monitor and detect cyber-attacks in the in-vehicle network. Lastly, we have introduced novel techniques for jitter management and security management and deployed lightweight IDSs on resource constrained automotive ECUs while ensuring the real-time performance of the automotive systems

    Trustworthiness in Mobile Cyber Physical Systems

    Get PDF
    Computing and communication capabilities are increasingly embedded in diverse objects and structures in the physical environment. They will link the ‘cyberworld’ of computing and communications with the physical world. These applications are called cyber physical systems (CPS). Obviously, the increased involvement of real-world entities leads to a greater demand for trustworthy systems. Hence, we use "system trustworthiness" here, which can guarantee continuous service in the presence of internal errors or external attacks. Mobile CPS (MCPS) is a prominent subcategory of CPS in which the physical component has no permanent location. Mobile Internet devices already provide ubiquitous platforms for building novel MCPS applications. The objective of this Special Issue is to contribute to research in modern/future trustworthy MCPS, including design, modeling, simulation, dependability, and so on. It is imperative to address the issues which are critical to their mobility, report significant advances in the underlying science, and discuss the challenges of development and implementation in various applications of MCPS

    Machine Learning for AI-Augmented Design Space Exploration of Computer Systems

    Get PDF
    Advanced and emerging computer systems, ranging from supercomputers to embedded systems, feature high performance, energy efficiency, acceleration, and specialization. Design of such systems involves ever-increasing circuit complexity and architectural diversity. Commercial high-end processors, realized as very-large-scale integration circuits, have integrated exponentially increasing number of transistors on a chip over many decades. Along with the evolution of semiconductor manufacturing technology, another driving force behind the progress of processors has been the development of computer-aided design (CAD) software tools. Logic synthesis and physical design (LSPD) tool-chains allow designers to describe the computer system at the register-transfer level of abstraction and automatically convert the description into an integration circuit layout. The slowdown of technology scaling, on the other hand, has motivated the emergence of dark silicon and heterogeneous architectures with application-specific hardware accelerators. Design of various accelerators is facilitated by high-level synthesis (HLS) tools that translate a behavioral description of a computer system into a structural register-transfer level one. CAD approaches have evolved towards raising the level of design abstraction and providing more options to optimize the architecture. For each system synthesized via advanced CAD tools, designers explore the design space in search of optimal configurations of the tool options and architectural choices, also called . These knobs affect the execution of CAD algorithms and eventually impact the multi-dimensional -- () of the final implementation. During design-space exploration (DSE), designers leverage their experience and expertise pertaining to determining the relationship between knobs and QoR. To further reduce the number of time and resource consuming CAD runs during DSE, a large number of heuristic and model-based approaches have been proposed. More recently, the rise of machine learning (ML) and artificial intelligence (AI) has prompted the possibility of AI-augmented DSE which exploits ML techniques to predict the knobs-QoR relationship. Yet, existing heuristic and ML-based approaches still require a sufficient number of CAD runs for each system because they do not accumulate and exploit experiential knowledge across the systems as designers would do. To expand the potential of AI-augmented DSE and push the frontier forward, multiple challenges arise due to the characteristics of CAD flows. 1) Whereas many ML applications utilize data obtained from huge collections of users' input and public databases for a single problem, the QoR-prediction problem for each system suffers from limited availability of data obtained from expensive CAD runs. Especially, an industrial LSPD tool-chain specifies hundreds of separate knobs, resulting in an extreme curse of dimensionality. 2) Different systems exhibit different knobs-QoR relationship. Hence, learning from previously explored systems needs to be preceded by identifying distinct systems and relating them to one another. Often, it is difficult to obtain an efficient representation of a system. 3) Designers often apply different sets of knob configurations to different systems, which makes it harder to learn from previous DSE results. Especially in HLS, the heterogeneity of various systems leads to broad knob heterogeneity across them. To address these challenges and boost the ML performance, I propose to flexibly connect the elements of the many QoR-prediction problems with one another. My thesis is that . For LSPD of industrial high-performance processors, I propose a novel collaborative recommender system approach that learns hidden features from the interactions (CAD runs) of many \textit{users} (systems) and \textit{items} (knob configurations). To cope with the curse of dimensionality, the item features are decomposed into features of item attributes (knobs). The combined model predicts QoR for each user-item pair. For HLS of application-specific accelerators, I present a series of neural network models in the order of evolution towards the proposed mixed-sharing \textit{transfer learning} model. Transfer learning aims at leveraging knowledge gained from previous problems; however, due to the system and knob heterogeneities, the model needs to distinguish which piece of that knowledge should be transferred. The proposed ML approaches aim to not only use experiential knowledge as designers do but also to ultimately assist designers by providing alternative insights and suggesting optimization possibilities for new systems. As an effort in this direction, I develop an AI-augmented DSE tool that exploits the aforementioned models and \textit{generates} recommended knob configurations for new target systems. Through this research, I investigate the potential of next-level AI-augmented DSE with the goal of promoting secure collaborative engineering in the CAD community without the need of sharing confidential information and intellectual properties

    Industry 4.0 for SMEs

    Get PDF
    This open access book explores the concept of Industry 4.0, which presents a considerable challenge for the production and service sectors. While digitization initiatives are usually integrated into the central corporate strategy of larger companies, smaller firms often have problems putting Industry 4.0 paradigms into practice. Small and medium-sized enterprises (SMEs) possess neither the human nor financial resources to systematically investigate the potential and risks of introducing Industry 4.0. Addressing this obstacle, the international team of authors focuses on the development of smart manufacturing concepts, logistics solutions and managerial models specifically for SMEs. Aiming to provide methodological frameworks and pilot solutions for SMEs during their digital transformation, this innovative and timely book will be of great use to scholars researching technology management, digitization and small business, as well as practitioners within manufacturing companies

    Deep Neural Networks for Visual Bridge Inspections and Defect Visualisation in Civil Engineering

    Get PDF

    EG-ICE 2021 Workshop on Intelligent Computing in Engineering

    Get PDF
    The 28th EG-ICE International Workshop 2021 brings together international experts working at the interface between advanced computing and modern engineering challenges. Many engineering tasks require open-world resolutions to support multi-actor collaboration, coping with approximate models, providing effective engineer-computer interaction, search in multi-dimensional solution spaces, accommodating uncertainty, including specialist domain knowledge, performing sensor-data interpretation and dealing with incomplete knowledge. While results from computer science provide much initial support for resolution, adaptation is unavoidable and most importantly, feedback from addressing engineering challenges drives fundamental computer-science research. Competence and knowledge transfer goes both ways

    Industry 4.0 for SMEs

    Get PDF
    This open access book explores the concept of Industry 4.0, which presents a considerable challenge for the production and service sectors. While digitization initiatives are usually integrated into the central corporate strategy of larger companies, smaller firms often have problems putting Industry 4.0 paradigms into practice. Small and medium-sized enterprises (SMEs) possess neither the human nor financial resources to systematically investigate the potential and risks of introducing Industry 4.0. Addressing this obstacle, the international team of authors focuses on the development of smart manufacturing concepts, logistics solutions and managerial models specifically for SMEs. Aiming to provide methodological frameworks and pilot solutions for SMEs during their digital transformation, this innovative and timely book will be of great use to scholars researching technology management, digitization and small business, as well as practitioners within manufacturing companies

    EG-ICE 2021 Workshop on Intelligent Computing in Engineering

    Get PDF
    The 28th EG-ICE International Workshop 2021 brings together international experts working at the interface between advanced computing and modern engineering challenges. Many engineering tasks require open-world resolutions to support multi-actor collaboration, coping with approximate models, providing effective engineer-computer interaction, search in multi-dimensional solution spaces, accommodating uncertainty, including specialist domain knowledge, performing sensor-data interpretation and dealing with incomplete knowledge. While results from computer science provide much initial support for resolution, adaptation is unavoidable and most importantly, feedback from addressing engineering challenges drives fundamental computer-science research. Competence and knowledge transfer goes both ways
    corecore