340 research outputs found

    Semifields, relative difference sets, and bent functions

    Full text link
    Recently, the interest in semifields has increased due to the discovery of several new families and progress in the classification problem. Commutative semifields play an important role since they are equivalent to certain planar functions (in the case of odd characteristic) and to modified planar functions in even characteristic. Similarly, commutative semifields are equivalent to relative difference sets. The goal of this survey is to describe the connection between these concepts. Moreover, we shall discuss power mappings that are planar and consider component functions of planar mappings, which may be also viewed as projections of relative difference sets. It turns out that the component functions in the even characteristic case are related to negabent functions as well as to Z4\mathbb{Z}_4-valued bent functions.Comment: Survey paper for the RICAM workshop "Emerging applications of finite fields", 09-13 December 2013, Linz, Austria. This article will appear in the proceedings volume for this workshop, published as part of the "Radon Series on Computational and Applied Mathematics" by DeGruyte

    kk-Schur functions and affine Schubert calculus

    Full text link
    This book is an exposition of the current state of research of affine Schubert calculus and kk-Schur functions. This text is based on a series of lectures given at a workshop titled "Affine Schubert Calculus" that took place in July 2010 at the Fields Institute in Toronto, Ontario. The story of this research is told in three parts: 1. Primer on kk-Schur Functions 2. Stanley symmetric functions and Peterson algebras 3. Affine Schubert calculusComment: 213 pages; conference website: http://www.fields.utoronto.ca/programs/scientific/10-11/schubert/, updates and corrections since v1. This material is based upon work supported by the National Science Foundation under Grant No. DMS-065264

    Algebraic Independence and Blackbox Identity Testing

    Full text link
    Algebraic independence is an advanced notion in commutative algebra that generalizes independence of linear polynomials to higher degree. Polynomials {f_1, ..., f_m} \subset \F[x_1, ..., x_n] are called algebraically independent if there is no non-zero polynomial F such that F(f_1, ..., f_m) = 0. The transcendence degree, trdeg{f_1, ..., f_m}, is the maximal number r of algebraically independent polynomials in the set. In this paper we design blackbox and efficient linear maps \phi that reduce the number of variables from n to r but maintain trdeg{\phi(f_i)}_i = r, assuming f_i's sparse and small r. We apply these fundamental maps to solve several cases of blackbox identity testing: (1) Given a polynomial-degree circuit C and sparse polynomials f_1, ..., f_m with trdeg r, we can test blackbox D := C(f_1, ..., f_m) for zeroness in poly(size(D))^r time. (2) Define a spsp_\delta(k,s,n) circuit C to be of the form \sum_{i=1}^k \prod_{j=1}^s f_{i,j}, where f_{i,j} are sparse n-variate polynomials of degree at most \delta. For k = 2 we give a poly(sn\delta)^{\delta^2} time blackbox identity test. (3) For a general depth-4 circuit we define a notion of rank. Assuming there is a rank bound R for minimal simple spsp_\delta(k,s,n) identities, we give a poly(snR\delta)^{Rk\delta^2} time blackbox identity test for spsp_\delta(k,s,n) circuits. This partially generalizes the state of the art of depth-3 to depth-4 circuits. The notion of trdeg works best with large or zero characteristic, but we also give versions of our results for arbitrary fields.Comment: 32 pages, preliminary versio
    corecore