9,944 research outputs found

    On Stronger Types of Locating-Dominating Codes

    Get PDF
    Locating-dominating codes in a graph find their application in sensor networks and have been studied extensively over the years. A locating-dominating code can locate one object in a sensor network, but if there is more than one object, it may lead to false conclusions. In this paper, we consider stronger types of locating-dominating codes which can locate one object and detect if there are multiple objects. We study the properties of these codes and provide bounds on the smallest possible size of these codes, for example, with the aid of the Dilworth number and Sperner families Moreover, these codes are studied in trees and Cartesian products of graphs. We also give the complete realization theorems for the coexistence of the smallest possible size of these codes and the optimal locating-dominating codes in a graph

    Automated Discharging Arguments for Density Problems in Grids

    Full text link
    Discharging arguments demonstrate a connection between local structure and global averages. This makes it an effective tool for proving lower bounds on the density of special sets in infinite grids. However, the minimum density of an identifying code in the hexagonal grid remains open, with an upper bound of 37≈0.428571\frac{3}{7} \approx 0.428571 and a lower bound of 512≈0.416666\frac{5}{12}\approx 0.416666. We present a new, experimental framework for producing discharging arguments using an algorithm. This algorithm replaces the lengthy case analysis of human-written discharging arguments with a linear program that produces the best possible lower bound using the specified set of discharging rules. We use this framework to present a lower bound of 2355≈0.418181\frac{23}{55} \approx 0.418181 on the density of an identifying code in the hexagonal grid, and also find several sharp lower bounds for variations on identifying codes in the hexagonal, square, and triangular grids.Comment: This is an extended abstract, with 10 pages, 2 appendices, 5 tables, and 2 figure

    Edge analytics in the internet of things

    Get PDF
    High-data-rate sensors are becoming ubiquitous in the Internet of Things. GigaSight is an Internet-scale repository of crowd-sourced video content that enforces privacy preferences and access controls. The architecture is a federated system of VM-based cloudlets that perform video analytics at the edge of the Internet

    Simulation of undular bores evolution with damping

    Get PDF
    Propagation of undular bores with damping is considered in the framework of perturbed extended Korteweg-de Vries (peKdV) equation. Two types of damping terms for the peKdV equation, namely linear and Chezy frictional terms, which describe the turbulent boundary layers in the ïŹ‚uid ïŹ‚ow are considered. Solving the peKdV equation numerically using the method of lines shows that under the inïŹ‚uence of damping, the lead-ing solitary wave of the undular bores will split from the nonlinear wavetrain, propagates and behaves like an isolated solitary wave. The amplitude of the leading wave will remain the same for some times before it starts to decay again at a larger time. In general the amplitude of the leading wave and the mean level across the undular bore decreases due to the eïŹ€ect of damping

    Internet of things

    Get PDF
    Manual of Digital Earth / Editors: Huadong Guo, Michael F. Goodchild, Alessandro Annoni .- Springer, 2020 .- ISBN: 978-981-32-9915-3Digital Earth was born with the aim of replicating the real world within the digital world. Many efforts have been made to observe and sense the Earth, both from space (remote sensing) and by using in situ sensors. Focusing on the latter, advances in Digital Earth have established vital bridges to exploit these sensors and their networks by taking location as a key element. The current era of connectivity envisions that everything is connected to everything. The concept of the Internet of Things(IoT)emergedasaholisticproposaltoenableanecosystemofvaried,heterogeneous networked objects and devices to speak to and interact with each other. To make the IoT ecosystem a reality, it is necessary to understand the electronic components, communication protocols, real-time analysis techniques, and the location of the objects and devices. The IoT ecosystem and the Digital Earth (DE) jointly form interrelated infrastructures for addressing today’s pressing issues and complex challenges. In this chapter, we explore the synergies and frictions in establishing an efïŹcient and permanent collaboration between the two infrastructures, in order to adequately address multidisciplinary and increasingly complex real-world problems. Although there are still some pending issues, the identiïŹed synergies generate optimism for a true collaboration between the Internet of Things and the Digital Earth

    Vision Science and Technology at NASA: Results of a Workshop

    Get PDF
    A broad review is given of vision science and technology within NASA. The subject is defined and its applications in both NASA and the nation at large are noted. A survey of current NASA efforts is given, noting strengths and weaknesses of the NASA program

    Interactive virtual indoor navigation system using visual recognition and pedestrian dead reckoning techniques

    Get PDF
    Finding a destination in an unfamiliar indoor environment requires cumbersome effort to refer to a physical floor plan or directory to locate the intended destination. With the advancements of mobile technologies, a navigational system using mobile computing devices such as mobile phone or tablet could aid users in locating the desired destination with ease. This paper presented an interactive virtual indoor navigation system which is developed for Sunway University campus. In order to provide an interactive and context-sensitive navigation platform, a hybrid solution has been proposed by blending the sensor capabilities on the mobile devices to work in an indoor environment. These sensors include utilizing the built-in accelerometer, compass and camera capabilities to create an interactive content of indoor navigation system using visual recognition and pedestrian dead reckoning for Augmented Reality (AR). Furthermore, user satisfaction and feedback survey have been collected for further improvement the proposed solution
    • 

    corecore