2,727 research outputs found

    Codes for differential signaling with many antennas

    Get PDF
    We construct signal constellations for differential transmission with multiple basestation antennas. The signals are derived using the theory of fixed-point-free groups and are especially suitable for mobile cellular applications because they do not require the handset to have more than one antenna or to know the time-varying propagation environment. Yet we achieve full transmitter diversity and excellent performance gains over a single-antenna system

    A universal space-time architecture for multiple-antenna aided systems

    No full text
    In this tutorial, we first review the family of conventional multiple-antenna techniques, and then we provide a general overview of the recent concept of the powerful Multiple-Input Multiple-Output (MIMO) family based on a universal Space-Time Shift Keying (STSK) philosophy. When appropriately configured, the proposed STSK scheme has the potential of outperforming conventional MIMO arrangements

    High-rate codes that are linear in space and time

    Get PDF
    Multiple-antenna systems that operate at high rates require simple yet effective space-time transmission schemes to handle the large traffic volume in real time. At rates of tens of bits per second per hertz, Vertical Bell Labs Layered Space-Time (V-BLAST), where every antenna transmits its own independent substream of data, has been shown to have good performance and simple encoding and decoding. Yet V-BLAST suffers from its inability to work with fewer receive antennas than transmit antennas-this deficiency is especially important for modern cellular systems, where a base station typically has more antennas than the mobile handsets. Furthermore, because V-BLAST transmits independent data streams on its antennas there is no built-in spatial coding to guard against deep fades from any given transmit antenna. On the other hand, there are many previously proposed space-time codes that have good fading resistance and simple decoding, but these codes generally have poor performance at high data rates or with many antennas. We propose a high-rate coding scheme that can handle any configuration of transmit and receive antennas and that subsumes both V-BLAST and many proposed space-time block codes as special cases. The scheme transmits substreams of data in linear combinations over space and time. The codes are designed to optimize the mutual information between the transmitted and received signals. Because of their linear structure, the codes retain the decoding simplicity of V-BLAST, and because of their information-theoretic optimality, they possess many coding advantages. We give examples of the codes and show that their performance is generally superior to earlier proposed methods over a wide range of rates and signal-to-noise ratios (SNRs)

    Dispensing with Channel Estimation…

    No full text
    In this article, we investigate the feasibility of noncoherent detection schemes in wireless communication systems as a low-complexity alternative to the family of coherent schemes. The noncoherent schemes require no channel knowledge at the receiver for the detection of the received signal, while the coherent schemes require channel inherently complex estimation, which implies that pilot symbols have to be transmitted resulting in a wastage of the available bandwidth as well as the transmission power

    The Modern FPGA as Discriminator, TDC and ADC

    Get PDF
    Recent generations of Field Programmable Gate Arrays (FPGAs) have become indispensible tools for complex state machine control and signal processing, and now routinely incorporate CPU cores to allow execution of user software code. At the same time, their exceptional performance permits low-power implementation of functionality previously the exclusive domain of dedicated analog electronics. Specific examples presented here use FPGAs as discriminator, time-to-digital (TDC) and analog-to-digital converter (ADC). All three cases are examples of instrumentation for current or future astroparticle experiments.Comment: 7 pages, v3 minor JINST editorial correction
    corecore