32,766 research outputs found

    Distance-regular graphs

    Get PDF
    This is a survey of distance-regular graphs. We present an introduction to distance-regular graphs for the reader who is unfamiliar with the subject, and then give an overview of some developments in the area of distance-regular graphs since the monograph 'BCN' [Brouwer, A.E., Cohen, A.M., Neumaier, A., Distance-Regular Graphs, Springer-Verlag, Berlin, 1989] was written.Comment: 156 page

    A Construction of Quantum LDPC Codes from Cayley Graphs

    Get PDF
    We study a construction of Quantum LDPC codes proposed by MacKay, Mitchison and Shokrollahi. It is based on the Cayley graph of Fn together with a set of generators regarded as the columns of the parity-check matrix of a classical code. We give a general lower bound on the minimum distance of the Quantum code in O(dn2)\mathcal{O}(dn^2) where d is the minimum distance of the classical code. When the classical code is the [n,1,n][n, 1, n] repetition code, we are able to compute the exact parameters of the associated Quantum code which are [[2n,2n+12,2n−12]][[2^n, 2^{\frac{n+1}{2}}, 2^{\frac{n-1}{2}}]].Comment: The material in this paper was presented in part at ISIT 2011. This article is published in IEEE Transactions on Information Theory. We point out that the second step of the proof of Proposition VI.2 in the published version (Proposition 25 in the present version and Proposition 18 in the ISIT extended abstract) is not strictly correct. This issue is addressed in the present versio

    Perfect domination in regular grid graphs

    Full text link
    We show there is an uncountable number of parallel total perfect codes in the integer lattice graph Λ{\Lambda} of R2\R^2. In contrast, there is just one 1-perfect code in Λ{\Lambda} and one total perfect code in Λ{\Lambda} restricting to total perfect codes of rectangular grid graphs (yielding an asymmetric, Penrose, tiling of the plane). We characterize all cycle products Cm×CnC_m\times C_n with parallel total perfect codes, and the dd-perfect and total perfect code partitions of Λ{\Lambda} and Cm×CnC_m\times C_n, the former having as quotient graph the undirected Cayley graphs of Z2d2+2d+1\Z_{2d^2+2d+1} with generator set {1,2d2}\{1,2d^2\}. For r>1r>1, generalization for 1-perfect codes is provided in the integer lattice of Rr\R^r and in the products of rr cycles, with partition quotient graph K2r+1K_{2r+1} taken as the undirected Cayley graph of Z2r+1\Z_{2r+1} with generator set {1,...,r}\{1,...,r\}.Comment: 16 pages; 11 figures; accepted for publication in Austral. J. Combi

    A note on the minimum distance of quantum LDPC codes

    Full text link
    We provide a new lower bound on the minimum distance of a family of quantum LDPC codes based on Cayley graphs proposed by MacKay, Mitchison and Shokrollahi. Our bound is exponential, improving on the quadratic bound of Couvreur, Delfosse and Z\'emor. This result is obtained by examining a family of subsets of the hypercube which locally satisfy some parity conditions

    On the Minimum Degree up to Local Complementation: Bounds and Complexity

    Full text link
    The local minimum degree of a graph is the minimum degree reached by means of a series of local complementations. In this paper, we investigate on this quantity which plays an important role in quantum computation and quantum error correcting codes. First, we show that the local minimum degree of the Paley graph of order p is greater than sqrt{p} - 3/2, which is, up to our knowledge, the highest known bound on an explicit family of graphs. Probabilistic methods allows us to derive the existence of an infinite number of graphs whose local minimum degree is linear in their order with constant 0.189 for graphs in general and 0.110 for bipartite graphs. As regards the computational complexity of the decision problem associated with the local minimum degree, we show that it is NP-complete and that there exists no k-approximation algorithm for this problem for any constant k unless P = NP.Comment: 11 page

    On Weak Odd Domination and Graph-based Quantum Secret Sharing

    Full text link
    A weak odd dominated (WOD) set in a graph is a subset B of vertices for which there exists a distinct set of vertices C such that every vertex in B has an odd number of neighbors in C. We point out the connections of weak odd domination with odd domination, [sigma,rho]-domination, and perfect codes. We introduce bounds on \kappa(G), the maximum size of WOD sets of a graph G, and on \kappa'(G), the minimum size of non WOD sets of G. Moreover, we prove that the corresponding decision problems are NP-complete. The study of weak odd domination is mainly motivated by the design of graph-based quantum secret sharing protocols: a graph G of order n corresponds to a secret sharing protocol which threshold is \kappa_Q(G) = max(\kappa(G), n-\kappa'(G)). These graph-based protocols are very promising in terms of physical implementation, however all such graph-based protocols studied in the literature have quasi-unanimity thresholds (i.e. \kappa_Q(G)=n-o(n) where n is the order of the graph G underlying the protocol). In this paper, we show using probabilistic methods, the existence of graphs with smaller \kappa_Q (i.e. \kappa_Q(G)< 0.811n where n is the order of G). We also prove that deciding for a given graph G whether \kappa_Q(G)< k is NP-complete, which means that one cannot efficiently double check that a graph randomly generated has actually a \kappa_Q smaller than 0.811n.Comment: Subsumes arXiv:1109.6181: Optimal accessing and non-accessing structures for graph protocol
    • …
    corecore