101 research outputs found

    Game-Theoretic and Machine-Learning Techniques for Cyber-Physical Security and Resilience in Smart Grid

    Get PDF
    The smart grid is the next-generation electrical infrastructure utilizing Information and Communication Technologies (ICTs), whose architecture is evolving from a utility-centric structure to a distributed Cyber-Physical System (CPS) integrated with a large-scale of renewable energy resources. However, meeting reliability objectives in the smart grid becomes increasingly challenging owing to the high penetration of renewable resources and changing weather conditions. Moreover, the cyber-physical attack targeted at the smart grid has become a major threat because millions of electronic devices interconnected via communication networks expose unprecedented vulnerabilities, thereby increasing the potential attack surface. This dissertation is aimed at developing novel game-theoretic and machine-learning techniques for addressing the reliability and security issues residing at multiple layers of the smart grid, including power distribution system reliability forecasting, risk assessment of cyber-physical attacks targeted at the grid, and cyber attack detection in the Advanced Metering Infrastructure (AMI) and renewable resources. This dissertation first comprehensively investigates the combined effect of various weather parameters on the reliability performance of the smart grid, and proposes a multilayer perceptron (MLP)-based framework to forecast the daily number of power interruptions in the distribution system using time series of common weather data. Regarding evaluating the risk of cyber-physical attacks faced by the smart grid, a stochastic budget allocation game is proposed to analyze the strategic interactions between a malicious attacker and the grid defender. A reinforcement learning algorithm is developed to enable the two players to reach a game equilibrium, where the optimal budget allocation strategies of the two players, in terms of attacking/protecting the critical elements of the grid, can be obtained. In addition, the risk of the cyber-physical attack can be derived based on the successful attack probability to various grid elements. Furthermore, this dissertation develops a multimodal data-driven framework for the cyber attack detection in the power distribution system integrated with renewable resources. This approach introduces the spare feature learning into an ensemble classifier for improving the detection efficiency, and implements the spatiotemporal correlation analysis for differentiating the attacked renewable energy measurements from fault scenarios. Numerical results based on the IEEE 34-bus system show that the proposed framework achieves the most accurate detection of cyber attacks reported in the literature. To address the electricity theft in the AMI, a Distributed Intelligent Framework for Electricity Theft Detection (DIFETD) is proposed, which is equipped with Benford’s analysis for initial diagnostics on large smart meter data. A Stackelberg game between utility and multiple electricity thieves is then formulated to model the electricity theft actions. Finally, a Likelihood Ratio Test (LRT) is utilized to detect potentially fraudulent meters

    Security and Privacy for Modern Wireless Communication Systems

    Get PDF
    The aim of this reprint focuses on the latest protocol research, software/hardware development and implementation, and system architecture design in addressing emerging security and privacy issues for modern wireless communication networks. Relevant topics include, but are not limited to, the following: deep-learning-based security and privacy design; covert communications; information-theoretical foundations for advanced security and privacy techniques; lightweight cryptography for power constrained networks; physical layer key generation; prototypes and testbeds for security and privacy solutions; encryption and decryption algorithm for low-latency constrained networks; security protocols for modern wireless communication networks; network intrusion detection; physical layer design with security consideration; anonymity in data transmission; vulnerabilities in security and privacy in modern wireless communication networks; challenges of security and privacy in node–edge–cloud computation; security and privacy design for low-power wide-area IoT networks; security and privacy design for vehicle networks; security and privacy design for underwater communications networks

    FOSS4G 2016 Proceedings: Academic Program - selected papers and posters

    Get PDF
    This Conference Proceedings is a collection of selected papers and posters submitted to the Academic Program of the International Conference for Free and Open Source Software for Geospatial (FOSS4G 2016), 24th to 26th August 2016 in Bonn, Germany. Like in previous FOSS4G conferences on national and international level the academic papers and posters cover an extensive wide range of topics reflecting the contribution of the academia to this field by the development of open source software components, in the design of open standards, in the proliferation of web-based solutions, in the dissemination of the open principles important in science and education, or in the collection and the hosting of freely available geo-data

    Embracing Analytics in the Drinking Water Industry

    Get PDF
    Analytics can support numerous aspects of water industry planning, management, and operations. Given this wide range of touchpoints and applications, it is becoming increasingly imperative that the championship and capability of broad-based analytics needs to be developed and practically integrated to address the current and transitional challenges facing the drinking water industry. Analytics will contribute substantially to future efforts to provide innovative solutions that make the water industry more sustainable and resilient. The purpose of this book is to introduce analytics to practicing water engineers so they can deploy the covered subjects, approaches, and detailed techniques in their daily operations, management, and decision-making processes. Also, undergraduate students as well as early graduate students who are in the water concentrations will be exposed to established analytical techniques, along with many methods that are currently considered to be new or emerging/maturing. This book covers a broad spectrum of water industry analytics topics in an easy-to-follow manner. The overall background and contexts are motivated by (and directly drawn from) actual water utility projects that the authors have worked on numerous recent years. The authors strongly believe that the water industry should embrace and integrate data-driven fundamentals and methods into their daily operations and decision-making process(es) to replace established ìrule-of-thumbî and weak heuristic approaches ñ and an analytics viewpoint, approach, and culture is key to this industry transformation
    • …
    corecore