761 research outputs found

    Power and Bandwidth Efficient Coded Modulation for Linear Gaussian Channels

    Get PDF
    A scheme for power- and bandwidth-efficient communication on the linear Gaussian channel is proposed. A scenario is assumed in which the channel is stationary in time and the channel characteristics are known at the transmitter. Using interleaving, the linear Gaussian channel with its intersymbol interference is decomposed into a set of memoryless subchannels. Each subchannel is further decomposed into parallel binary memoryless channels, to enable the use of binary codes. Code bits from these parallel binary channels are mapped to higher-order near-Gaussian distributed constellation symbols. At the receiver, the code bits are detected and decoded in a multistage fashion. The scheme is demonstrated on a simple instance of the linear Gaussian channel. Simulations show that the scheme achieves reliable communication at 1.2 dB away from the Shannon capacity using a moderate number of subchannels

    A Unified Framework for Linear-Programming Based Communication Receivers

    Full text link
    It is shown that a large class of communication systems which admit a sum-product algorithm (SPA) based receiver also admit a corresponding linear-programming (LP) based receiver. The two receivers have a relationship defined by the local structure of the underlying graphical model, and are inhibited by the same phenomenon, which we call 'pseudoconfigurations'. This concept is a generalization of the concept of 'pseudocodewords' for linear codes. It is proved that the LP receiver has the 'maximum likelihood certificate' property, and that the receiver output is the lowest cost pseudoconfiguration. Equivalence of graph-cover pseudoconfigurations and linear-programming pseudoconfigurations is also proved. A concept of 'system pseudodistance' is defined which generalizes the existing concept of pseudodistance for binary and nonbinary linear codes. It is demonstrated how the LP design technique may be applied to the problem of joint equalization and decoding of coded transmissions over a frequency selective channel, and a simulation-based analysis of the error events of the resulting LP receiver is also provided. For this particular application, the proposed LP receiver is shown to be competitive with other receivers, and to be capable of outperforming turbo equalization in bit and frame error rate performance.Comment: 13 pages, 6 figures. To appear in the IEEE Transactions on Communication

    Sub-Nyquist Field Trial Using Time Frequency Packed DP-QPSK Super-Channel Within Fixed ITU-T Grid

    Full text link
    Sub-Nyquist time frequency packing technique was demonstrated for the first time in a super channel field trial transmission over long-haul distances. The technique allows a limited spectral occupancy even with low order modulation formats. The transmission was successfully performed on a deployed Australian link between Sydney and Melbourne which included 995 km of uncompensated SMF with coexistent traffic. 40 and 100 Gb/s co-propagating channels were transmitted together with the super-channel in a 50 GHz ITU-T grid without additional penalty. The super-channel consisted of eight sub-channels with low-level modulation format, i.e. DP-QPSK, guaranteeing better OSNR robustness and reduced complexity with respect to higher order formats. At the receiver side, coherent detection was used together with iterative maximum-a-posteriori (MAP) detection and decoding. A 975 Gb/s DP-QPSK super-channel was successfully transmitted between Sydney and Melbourne within four 50GHz WSS channels (200 GHz). A maximum potential SE of 5.58 bit/s/Hz was achieved with an OSNR=15.8 dB, comparable to the OSNR of the installed 100 Gb/s channels. The system reliability was proven through long term measurements. In addition, by closing the link in a loop back configuration, a potential SE*d product of 9254 bit/s/Hz*km was achieved

    Optical Time-Frequency Packing: Principles, Design, Implementation, and Experimental Demonstration

    Full text link
    Time-frequency packing (TFP) transmission provides the highest achievable spectral efficiency with a constrained symbol alphabet and detector complexity. In this work, the application of the TFP technique to fiber-optic systems is investigated and experimentally demonstrated. The main theoretical aspects, design guidelines, and implementation issues are discussed, focusing on those aspects which are peculiar to TFP systems. In particular, adaptive compensation of propagation impairments, matched filtering, and maximum a posteriori probability detection are obtained by a combination of a butterfly equalizer and four 8-state parallel Bahl-Cocke-Jelinek-Raviv (BCJR) detectors. A novel algorithm that ensures adaptive equalization, channel estimation, and a proper distribution of tasks between the equalizer and BCJR detectors is proposed. A set of irregular low-density parity-check codes with different rates is designed to operate at low error rates and approach the spectral efficiency limit achievable by TFP at different signal-to-noise ratios. An experimental demonstration of the designed system is finally provided with five dual-polarization QPSK-modulated optical carriers, densely packed in a 100 GHz bandwidth, employing a recirculating loop to test the performance of the system at different transmission distances.Comment: This paper has been accepted for publication in the IEEE/OSA Journal of Lightwave Technolog

    Spectral Efficiency Optimization in Flexi-Grid Long-Haul Optical Systems

    Full text link
    Flexible grid optical networks allow a better exploitation of fiber capacity, by enabling a denser frequency allocation. A tighter channel spacing, however, requires narrower filters, which increase linear intersymbol interference (ISI), and may dramatically reduce system reach. Commercial coherent receivers are based on symbol by symbol detectors, which are quite sensitive to ISI. In this context, Nyquist spacing is considered as the ultimate limit to wavelength-division multiplexing (WDM) packing. In this paper, we show that by introducing a limited-complexity trellis processing at the receiver, either the reach of Nyquist WDM flexi-grid networks can be significantly extended, or a denser-than-Nyquist channel packing (i.e., a higher spectral efficiency (SE)) is possible at equal reach. By adopting well-known information-theoretic techniques, we design a limited-complexity trellis processing and quantify its SE gain in flexi-grid architectures where wavelength selective switches over a frequency grid of 12.5GHz are employed.Comment: 7 pages, 9 figure

    Turbo EP-based Equalization: a Filter-Type Implementation

    Get PDF
    This manuscript has been submitted to Transactions on Communications on September 7, 2017; revised on January 10, 2018 and March 27, 2018; and accepted on April 25, 2018 We propose a novel filter-type equalizer to improve the solution of the linear minimum-mean squared-error (LMMSE) turbo equalizer, with computational complexity constrained to be quadratic in the filter length. When high-order modulations and/or large memory channels are used the optimal BCJR equalizer is unavailable, due to its computational complexity. In this scenario, the filter-type LMMSE turbo equalization exhibits a good performance compared to other approximations. In this paper, we show that this solution can be significantly improved by using expectation propagation (EP) in the estimation of the a posteriori probabilities. First, it yields a more accurate estimation of the extrinsic distribution to be sent to the channel decoder. Second, compared to other solutions based on EP the computational complexity of the proposed solution is constrained to be quadratic in the length of the finite impulse response (FIR). In addition, we review previous EP-based turbo equalization implementations. Instead of considering default uniform priors we exploit the outputs of the decoder. Some simulation results are included to show that this new EP-based filter remarkably outperforms the turbo approach of previous versions of the EP algorithm and also improves the LMMSE solution, with and without turbo equalization
    corecore