75 research outputs found

    Каскадное кодирование на основе многомерных решеток и кодов Рида — Соломона для многоуровневой флэш-памяти

    Get PDF
    The article considers concatenated coding scheme for multilevel flash memory. In this scheme the inner stage is a finite subset of a multidimensional lattice (lattice code) and the outer stage uses Reed–Solomon code. Performance analysis is done for a model characterizing the basic physical features of a flash memory cell with non-uniform target voltage levels and noise variance dependent on the recorded value (input-dependent additive Gaussian noise, ID-AGN). For this model we develop a new approach to evaluating the error probability for the inner code. This approach is based on one-dimensional numerical integration of product of the characteristic functions of random variables used in the decoding process. It is shown how the parameters of the concatenated coding scheme can be adapted to keep the required error probability when the retention period and/or number of program-erasure cycles increase.В работе рассмотрена каскадная схема кодирования для многоуровневой флэш-памяти, внутренняя ступень которой представляет собой конечное подмножество многомерной целочисленной решетки (lattice code), а в качестве внешней ступени используется код Рида — Соломона. Анализ помехоустойчивости предложенной каскадной схемы выполнен применительно к модели, отражающей основные физические особенности ячейки флэш-памяти с неравномерно расположенными целевыми уровнями напряжения в ячейке и дисперсией шума, зависящей от записанного значения (input-dependent additive Gaussian noise, ID-AGN). Для этой модели в работе развит новый подход к вычислению вероятности ошибки декодирования внутреннего кода на основе одномерного численного интегрирования произведений характеристических функций случайных величин, используемых декодером при вынесении решения. Показано, как при увеличении времени хранения и/или числа циклов перезаписи адаптировать параметры предложенной каскадной конструкции с тем, чтобы сохранить требуемый уровень вероятности ошибки

    Каскадное кодирование для многоуровневой флэш-памяти с исправлением ошибок малой кратности во внешней ступени

    Get PDF
    One of the approaches to organization of error correcting coding for multilevel flash memory is based on concatenated construction, in particular, on multidimensional lattices for inner coding. A characteristic feature of such structures is the dominance of the complexity of the outer decoder in the total decoder complexity. Therefore the concatenated construction with low-complexity outer decoder may be attractive since in practical applications the decoder complexity is the crucial limitation for the usage of the error correction coding. We consider a concatenated coding scheme for multilevel flash memory with the Barnes-Wall lattice based codes as an inner code and the Reed-Solomon code with correction up to 4…5 errors as an outer one. Performance analysis is fulfilled for a model characterizing the basic physical features of a flash memory cell with non-uniform target voltage levels and noise variance dependent on the recorded value (input-dependent additive Gaussian noise, ID-AGN). For this model we develop a modification of our approach for evaluation the error probability for the inner code. This modification uses the parallel structure of the inner code trellis which significantly reduces the computational complexity of the performance estimation. We present numerical examples of achievable recording density for the Reed-Solomon codes with correction up to four errors as the outer code for wide range of the retention time and number of write/read cycles.Один из эффективных подходов к организации помехоустойчивого кодирования в многоуровневой флэш-памяти связан с использованием каскадных конструкций на основе многомерных целочисленных решеток, используемых для построения внутреннего кода. Характерной особенностью таких каскадных конструкций является доминирование доли сложности внешнего декодера в общей сложности каскадного декодера. Учитывая, что в практических приложениях сложность декодирования, как правило, ключевое ограничение, определяющее возможность использования помехоустойчивого кодирования для многоуровневой флэш-памяти, каскадные конструкции со сравнительно малой сложностью внешнего декодера могут оказаться привлекательным решением в рамках обменного соотношения «плотность записи — сложность декодирования». Рассмотрена каскадная схема кодирования для многоуровневой флэш-памяти, в которой в качестве внутренней ступени используются коды на основе решеток Барнса — Уолла, а в качестве внешней ступени используется код Рида — Соломона с исправлением малого числа ошибок — не более 4…5. Анализ помехоустойчивости предложенной каскадной схемы выполнен применительно к модели, отражающей основные физические особенности ячейки флэш-памяти с неравномерно расположенными целевыми уровнями напряжения в ячейке и дисперсией шума, зависящей от записанного значения (input-dependent additive Gaussian noise, ID-AGN). Для этой модели в работе развита модификация ранее предложенного авторами подхода к оценке вероятности ошибки декодирования внутреннего кода, основанная на использовании параллельной структуры кодовой решетки внутреннего кода, что позволяет существенно понизить сложность вычислений и ускорить получение окончательного результата. Приведены численные результаты, иллюстрирующие степень снижения достижимой плотности записи при введении ограничения на число исправляемых кодом Рида — Соломона ошибок — не более 4 — для широкого диапазона значений времени хранения данных и числа циклов перезаписи

    Каскадное кодирование для многоуровневой флэш-памяти с исправлением ошибок малой кратности во внешней ступени

    Get PDF
    Один из эффективных подходов к организации помехоустойчивого кодирования в многоуровневой флэш-памяти связан с использованием каскадных конструкций на основе многомерных целочисленных решеток, используемых для построения внутреннего кода. Характерной особенностью таких каскадных конструкций является доминирование доли сложности внешнего декодера в общей сложности каскадного декодера. Учитывая, что в практических приложениях сложность декодирования, как правило, ключевое ограничение, определяющее возможность использования помехоустойчивого кодирования для многоуровневой флэш-памяти, каскадные конструкции со сравнительно малой сложностью внешнего декодера могут оказаться привлекательным решением в рамках обменного соотношения «плотность записи — сложность декодирования». Рассмотрена каскадная схема кодирования для многоуровневой флэш-памяти, в которой в качестве внутренней ступени используются коды на основе решеток Барнса — Уолла, а в качестве внешней ступени используется код Рида — Соломона с исправлением малого числа ошибок — не более 4…5. Анализ помехоустойчивости предложенной каскадной схемы выполнен применительно к модели, отражающей основные физические особенности ячейки флэш-памяти с неравномерно расположенными целевыми уровнями напряжения в ячейке и дисперсией шума, зависящей от записанного значения (input-dependent additive Gaussian noise, ID-AGN). Для этой модели в работе развита модификация ранее предложенного авторами подхода к оценке вероятности ошибки декодирования внутреннего кода, основанная на использовании параллельной структуры кодовой решетки внутреннего кода, что позволяет существенно понизить сложность вычислений и ускорить получение окончательного результата. Приведены численные результаты, иллюстрирующие степень снижения достижимой плотности записи при введении ограничения на число исправляемых кодом Рида — Соломона ошибок — не более 4 — для широкого диапазона значений времени хранения данных и числа циклов перезаписи

    Анализ эффективности каскадного кодирования для повышения выносливости многоуровневой NAND флеш-памяти

    Get PDF
    The increasing storage density of modern NAND flash memory chips, achieved both due to scaling down the cell size, and due to the increasing number of used cell states, leads to a decrease in data storage reliability, namely, error probability, endurance (number of P/E cycling) and retention time. Error correction codes are often used to improve the reliability of data storage in multilevel flash memory. The effectiveness of using error correction codes is largely determined by the model accuracy that exhibits the basic processes associated with writing and reading data. The paper describes the main sources of disturbances for a flash cell that affect the threshold voltage of the cell in NAND flash memory, and represents an explicit form of the threshold voltage distribution. As an approximation of the obtained threshold voltage distribution, a Normal-Laplace mixture model was shown to be a good fit in multilevel flash memories for a large number of rewriting cycles. For this model, a performance analysis of the concatenated coding scheme with an outer Reed-Solomon code and an inner multilevel code consisting of binary component codes is carried out. The performed analysis makes it possible to obtain tradeoffs between the error probability, storage density, and the number of P/E cycling. The resulting tradeoffs show that the considered concatenated coding schemes allow, due to a very slight decrease in the storage density, to increase the number of P/E cycling up to 2–2.5 times than their nominal endurance specification while maintaining the required value of the bit error probability.Повышение плотности записи в современных чипах NAND флеш-памяти, достигаемое как за счет уменьшающегося физического размера ячейки, так и благодаря возрастающему количеству используемых состояний ячейки, сопровождается снижением надежности хранения данных – вероятности ошибки, выносливости (числа циклов перезаписи) и времени хранения. Стандартным решением, позволяющим повысить надежность хранения данных в многоуровневой флеш-памяти, является введение помехоустойчивого кодирования. Эффективность введения помехоустойчивого кодирования в существенной степени определяется адекватностью модели, формализующей основные процессы, связанные с записью и чтением данных. В работе приводится описание основных искажений, сопровождающих процесс записи/считывания в NAND флеш-памяти, и явный вид плотностей распределения результирующего шума. В качестве аппроксимации полученных плотностей распределения результирующего шума рассматривается модель на основе композиции гауссова распределения и распределения Лапласа, достаточно адекватно отражающая плотности распределения результирующего шума при большом числе циклов перезаписи. Для этой модели проводится анализ помехоустойчивости каскадных кодовых конструкций с внешним кодом Рида-Соломона и внутренним многоуровневым кодом, состоящим из двоичных компонентных кодов. Выполненный анализ позволяет получить обменные соотношения между вероятностью ошибки, плотностью записи и числом циклов перезаписи. Полученные обменные соотношения показывают, что предложенные конструкции позволяют за счет очень незначительного снижения плотности записи обеспечить увеличение граничного значения числа циклов перезаписи (определяемого производителем) в 2–2.5 раза при сохранении требуемого значения вероятности ошибки на бит

    Анализ эффективности каскадного кодирования для повышения выносливости многоуровневой NAND флеш-памяти

    Get PDF
    Повышение плотности записи в современных чипах NAND флеш-памяти, достигаемое как за счет уменьшающегося физического размера ячейки, так и благодаря возрастающему количеству используемых состояний ячейки, сопровождается снижением надежности хранения данных – вероятности ошибки, выносливости (числа циклов перезаписи) и времени хранения. Стандартным решением, позволяющим повысить надежность хранения данных в многоуровневой флеш-памяти, является введение помехоустойчивого кодирования. Эффективность введения помехоустойчивого кодирования в существенной степени определяется адекватностью модели, формализующей основные процессы, связанные с записью и чтением данных. В работе приводится описание основных искажений, сопровождающих процесс записи/считывания в NAND флеш-памяти, и явный вид плотностей распределения результирующего шума. В качестве аппроксимации полученных плотностей распределения результирующего шума рассматривается модель на основе композиции гауссова распределения и распределения Лапласа, достаточно адекватно отражающая плотности распределения результирующего шума при большом числе циклов перезаписи. Для этой модели проводится анализ помехоустойчивости каскадных кодовых конструкций с внешним кодом Рида-Соломона и внутренним многоуровневым кодом, состоящим из двоичных компонентных кодов. Выполненный анализ позволяет получить обменные соотношения между вероятностью ошибки, плотностью записи и числом циклов перезаписи. Полученные обменные соотношения показывают, что предложенные конструкции позволяют за счет очень незначительного снижения плотности записи обеспечить увеличение граничного значения числа циклов перезаписи (определяемого производителем) в 2–2.5 раза при сохранении требуемого значения вероятности ошибки на бит

    Signal Processing for Caching Networks and Non-volatile Memories

    Get PDF
    The recent information explosion has created a pressing need for faster and more reliable data storage and transmission schemes. This thesis focuses on two systems: caching networks and non-volatile storage systems. It proposes network protocols to improve the efficiency of information delivery and signal processing schemes to reduce errors at the physical layer as well. This thesis first investigates caching and delivery strategies for content delivery networks. Caching has been investigated as a useful technique to reduce the network burden by prefetching some contents during o˙-peak hours. Coded caching [1] proposed by Maddah-Ali and Niesen is the foundation of our algorithms and it has been shown to be a useful technique which can reduce peak traffic rates by encoding transmissions so that different users can extract different information from the same packet. Content delivery networks store information distributed across multiple servers, so as to balance the load and avoid unrecoverable losses in case of node or disk failures. On one hand, distributed storage limits the capability of combining content from different servers into a single message, causing performance losses in coded caching schemes. But, on the other hand, the inherent redundancy existing in distributed storage systems can be used to improve the performance of those schemes through parallelism. This thesis proposes a scheme combining distributed storage of the content in multiple servers and an efficient coded caching algorithm for delivery to the users. This scheme is shown to reduce the peak transmission rate below that of state-of-the-art algorithms

    Combinatorial Methods in Coding Theory

    Get PDF
    This thesis is devoted to a range of questions in applied mathematics and signal processing motivated by applications in error correction, compressed sensing, and writing on non-volatile memories. The underlying thread of our results is the use of diverse combinatorial methods originating in coding theory and computer science. The thesis addresses three groups of problems. The first of them is aimed at the construction and analysis of codes for error correction. Here we examine properties of codes that are constructed using random and structured graphs and hypergraphs, with the main purpose of devising new decoding algorithms as well as estimating the distribution of Hamming weights in the resulting codes. Some of the results obtained give the best known estimates of the number of correctable errors for codes whose decoding relies on local operations on the graph. In the second part we address the question of constructing sampling operators for the compressed sensing problem. This topic has been the subject of a large body of works in the literature. We propose general constructions of sampling matrices based on ideas from coding theory that act as near-isometric maps on almost all sparse signal. This matrices can be used for dimensionality reduction and compressed sensing. In the third part we study the problem of reliable storage of information in non-volatile memories such as flash drives. This problem gives rise to a writing scheme that relies on relative magnitudes of neighboring cells, known as rank modulation. We establish the exact asymptotic behavior of the size of codes for rank modulation and suggest a number of new general constructions of such codes based on properties of finite fields as well as combinatorial considerations

    Advanced Modulation and Coding Technology Conference

    Get PDF
    The objectives, approach, and status of all current LeRC-sponsored industry contracts and university grants are presented. The following topics are covered: (1) the LeRC Space Communications Program, and Advanced Modulation and Coding Projects; (2) the status of four contracts for development of proof-of-concept modems; (3) modulation and coding work done under three university grants, two small business innovation research contracts, and two demonstration model hardware development contracts; and (4) technology needs and opportunities for future missions
    corecore