16,219 research outputs found

    Input Prioritization for Testing Neural Networks

    Full text link
    Deep neural networks (DNNs) are increasingly being adopted for sensing and control functions in a variety of safety and mission-critical systems such as self-driving cars, autonomous air vehicles, medical diagnostics, and industrial robotics. Failures of such systems can lead to loss of life or property, which necessitates stringent verification and validation for providing high assurance. Though formal verification approaches are being investigated, testing remains the primary technique for assessing the dependability of such systems. Due to the nature of the tasks handled by DNNs, the cost of obtaining test oracle data---the expected output, a.k.a. label, for a given input---is high, which significantly impacts the amount and quality of testing that can be performed. Thus, prioritizing input data for testing DNNs in meaningful ways to reduce the cost of labeling can go a long way in increasing testing efficacy. This paper proposes using gauges of the DNN's sentiment derived from the computation performed by the model, as a means to identify inputs that are likely to reveal weaknesses. We empirically assessed the efficacy of three such sentiment measures for prioritization---confidence, uncertainty, and surprise---and compare their effectiveness in terms of their fault-revealing capability and retraining effectiveness. The results indicate that sentiment measures can effectively flag inputs that expose unacceptable DNN behavior. For MNIST models, the average percentage of inputs correctly flagged ranged from 88% to 94.8%

    Search algorithms for regression test case prioritization

    Get PDF
    Regression testing is an expensive, but important, process. Unfortunately, there may be insufficient resources to allow for the re-execution of all test cases during regression testing. In this situation, test case prioritisation techniques aim to improve the effectiveness of regression testing, by ordering the test cases so that the most beneficial are executed first. Previous work on regression test case prioritisation has focused on Greedy Algorithms. However, it is known that these algorithms may produce sub-optimal results, because they may construct results that denote only local minima within the search space. By contrast, meta-heuristic and evolutionary search algorithms aim to avoid such problems. This paper presents results from an empirical study of the application of several greedy, meta-heuristic and evolutionary search algorithms to six programs, ranging from 374 to 11,148 lines of code for 3 choices of fitness metric. The paper addresses the problems of choice of fitness metric, characterisation of landscape modality and determination of the most suitable search technique to apply. The empirical results replicate previous results concerning Greedy Algorithms. They shed light on the nature of the regression testing search space, indicating that it is multi-modal. The results also show that Genetic Algorithms perform well, although Greedy approaches are surprisingly effective, given the multi-modal nature of the landscape

    FairFuzz: Targeting Rare Branches to Rapidly Increase Greybox Fuzz Testing Coverage

    Full text link
    In recent years, fuzz testing has proven itself to be one of the most effective techniques for finding correctness bugs and security vulnerabilities in practice. One particular fuzz testing tool, American Fuzzy Lop or AFL, has become popular thanks to its ease-of-use and bug-finding power. However, AFL remains limited in the depth of program coverage it achieves, in particular because it does not consider which parts of program inputs should not be mutated in order to maintain deep program coverage. We propose an approach, FairFuzz, that helps alleviate this limitation in two key steps. First, FairFuzz automatically prioritizes inputs exercising rare parts of the program under test. Second, it automatically adjusts the mutation of inputs so that the mutated inputs are more likely to exercise these same rare parts of the program. We conduct evaluation on real-world programs against state-of-the-art versions of AFL, thoroughly repeating experiments to get good measures of variability. We find that on certain benchmarks FairFuzz shows significant coverage increases after 24 hours compared to state-of-the-art versions of AFL, while on others it achieves high program coverage at a significantly faster rate

    Visualizing test diversity to support test optimisation

    Full text link
    Diversity has been used as an effective criteria to optimise test suites for cost-effective testing. Particularly, diversity-based (alternatively referred to as similarity-based) techniques have the benefit of being generic and applicable across different Systems Under Test (SUT), and have been used to automatically select or prioritise large sets of test cases. However, it is a challenge to feedback diversity information to developers and testers since results are typically many-dimensional. Furthermore, the generality of diversity-based approaches makes it harder to choose when and where to apply them. In this paper we address these challenges by investigating: i) what are the trade-off in using different sources of diversity (e.g., diversity of test requirements or test scripts) to optimise large test suites, and ii) how visualisation of test diversity data can assist testers for test optimisation and improvement. We perform a case study on three industrial projects and present quantitative results on the fault detection capabilities and redundancy levels of different sets of test cases. Our key result is that test similarity maps, based on pair-wise diversity calculations, helped industrial practitioners identify issues with their test repositories and decide on actions to improve. We conclude that the visualisation of diversity information can assist testers in their maintenance and optimisation activities
    • …
    corecore