3,586 research outputs found

    High-level synthesis optimization for blocked floating-point matrix multiplication

    Get PDF
    In the last decade floating-point matrix multiplication on FPGAs has been studied extensively and efficient architectures as well as detailed performance models have been developed. By design these IP cores take a fixed footprint which not necessarily optimizes the use of all available resources. Moreover, the low-level architectures are not easily amenable to a parameterized synthesis. In this paper high-level synthesis is used to fine-tune the configuration parameters in order to achieve the highest performance with maximal resource utilization. An\ exploration strategy is presented to optimize the use of critical resources (DSPs, memory) for any given FPGA. To account for the limited memory size on the FPGA, a block-oriented matrix multiplication is organized such that the block summation is done on the CPU while the block multiplication occurs on the logic fabric simultaneously. The communication overhead between the CPU and the FPGA is minimized by streaming the blocks in a Gray code ordering scheme which maximizes the data reuse for consecutive block matrix product calculations. Using high-level synthesis optimization, the programmable logic operates at 93% of the theoretical peak performance and the combined CPU-FPGA design achieves 76% of the available hardware processing speed for the floating-point multiplication of 2K by 2K matrices

    Triggering BTeV

    Get PDF
    BTeV is a collider experiment at Fermilab designed for precision studies of CP violation and mixing. Unlike most collider experiments, the BTeV detector has a forward geometry that is optimized for the measurement of B and charm decays in a high-rate environment. While the rate of B production gives BTeV an advantage of almost four orders of magnitude over e+e- B factories, the BTeV Level 1 trigger must be able to accept data at a rate of 100 Gigabytes per second, reconstruct tracks and vertices, trigger on B events with high efficiency, and reject minimum bias events by a factor of 100:1. An overview of the Level 1 trigger will be presented.Comment: 6 pages, 3 figures. Contribution to the Proceedings, APS-Division of Particles and Fields Conference, DPF99, UCLA, Los Angeles, CA, Jan. 5-9, 199

    Dynamical Symmetry and Quantum Information Processing with Electromagnetically Induced Transparency

    Full text link
    We study in detail the interesting dynamical symmetry and its applications in various atomic systems with electromagnetically induced transparency (EIT) in this paper. By discovering the symmetrical Lie group of various atomic systems, such as single-atomic-ensemble composed of complex mm-level (m>3)(m>3) atoms, and twotwo-atomic-ensemble and even multi-atomic-ensemble system composed of of threethree-level atoms etc., one can obtain the general definition of dark-state polaritons (DSPs), and then the dark-states of these different systems. The symmetrical properties of the multi-level system and multi-atomic-ensemble system are shown to be dependent on some characteristic parameters of the EIT system. Furthermore, a controllable scheme to generate quantum entanglement between lights or atoms via quantized DSPs theory is discussed and the robustness of this scheme is analyzed by confirming the validity of adiabatic passage conditions in this paper.Comment: 14pages, 2figures, Phys. Lett. A, In prin

    Overview of Parallel Platforms for Common High Performance Computing

    Get PDF
    The paper deals with various parallel platforms used for high performance computing in the signal processing domain. More precisely, the methods exploiting the multicores central processing units such as message passing interface and OpenMP are taken into account. The properties of the programming methods are experimentally proved in the application of a fast Fourier transform and a discrete cosine transform and they are compared with the possibilities of MATLAB's built-in functions and Texas Instruments digital signal processors with very long instruction word architectures. New FFT and DCT implementations were proposed and tested. The implementation phase was compared with CPU based computing methods and with possibilities of the Texas Instruments digital signal processing library on C6747 floating-point DSPs. The optimal combination of computing methods in the signal processing domain and new, fast routines' implementation is proposed as well

    Efficient Neural Network Implementations on Parallel Embedded Platforms Applied to Real-Time Torque-Vectoring Optimization Using Predictions for Multi-Motor Electric Vehicles

    Get PDF
    The combination of machine learning and heterogeneous embedded platforms enables new potential for developing sophisticated control concepts which are applicable to the field of vehicle dynamics and ADAS. This interdisciplinary work provides enabler solutions -ultimately implementing fast predictions using neural networks (NNs) on field programmable gate arrays (FPGAs) and graphical processing units (GPUs)- while applying them to a challenging application: Torque Vectoring on a multi-electric-motor vehicle for enhanced vehicle dynamics. The foundation motivating this work is provided by discussing multiple domains of the technological context as well as the constraints related to the automotive field, which contrast with the attractiveness of exploiting the capabilities of new embedded platforms to apply advanced control algorithms for complex control problems. In this particular case we target enhanced vehicle dynamics on a multi-motor electric vehicle benefiting from the greater degrees of freedom and controllability offered by such powertrains. Considering the constraints of the application and the implications of the selected multivariable optimization challenge, we propose a NN to provide batch predictions for real-time optimization. This leads to the major contribution of this work: efficient NN implementations on two intrinsically parallel embedded platforms, a GPU and a FPGA, following an analysis of theoretical and practical implications of their different operating paradigms, in order to efficiently harness their computing potential while gaining insight into their peculiarities. The achieved results exceed the expectations and additionally provide a representative illustration of the strengths and weaknesses of each kind of platform. Consequently, having shown the applicability of the proposed solutions, this work contributes valuable enablers also for further developments following similar fundamental principles.Some of the results presented in this work are related to activities within the 3Ccar project, which has received funding from ECSEL Joint Undertaking under grant agreement No. 662192. This Joint Undertaking received support from the European Union’s Horizon 2020 research and innovation programme and Germany, Austria, Czech Republic, Romania, Belgium, United Kingdom, France, Netherlands, Latvia, Finland, Spain, Italy, Lithuania. This work was also partly supported by the project ENABLES3, which received funding from ECSEL Joint Undertaking under grant agreement No. 692455-2

    Toolflows for Mapping Convolutional Neural Networks on FPGAs: A Survey and Future Directions

    Get PDF
    In the past decade, Convolutional Neural Networks (CNNs) have demonstrated state-of-the-art performance in various Artificial Intelligence tasks. To accelerate the experimentation and development of CNNs, several software frameworks have been released, primarily targeting power-hungry CPUs and GPUs. In this context, reconfigurable hardware in the form of FPGAs constitutes a potential alternative platform that can be integrated in the existing deep learning ecosystem to provide a tunable balance between performance, power consumption and programmability. In this paper, a survey of the existing CNN-to-FPGA toolflows is presented, comprising a comparative study of their key characteristics which include the supported applications, architectural choices, design space exploration methods and achieved performance. Moreover, major challenges and objectives introduced by the latest trends in CNN algorithmic research are identified and presented. Finally, a uniform evaluation methodology is proposed, aiming at the comprehensive, complete and in-depth evaluation of CNN-to-FPGA toolflows.Comment: Accepted for publication at the ACM Computing Surveys (CSUR) journal, 201
    • …
    corecore