383 research outputs found

    Analysis of Multipath Mitigation Techniques with Land Mobile Satellite Channel Model

    Get PDF
    Multipath is undesirable for Global Navigation Satellite System (GNSS) receivers, since the reception of multipath can create a significant distortion to the shape of the correlation function leading to an error in the receivers’ position estimate. Many multipath mitigation techniques exist in the literature to deal with the multipath propagation problem in the context of GNSS. The multipath studies in the literature are often based on optimistic assumptions, for example, assuming a static two-path channel or a fading channel with a Rayleigh or a Nakagami distribution. But, in reality, there are a lot of channel modeling issues, for example, satellite-to-user geometry, variable number of paths, variable path delays and gains, Non Line-Of-Sight (NLOS) path condition, receiver movements, etc. that are kept out of consideration when analyzing the performance of these techniques. Therefore, this is of utmost importance to analyze the performance of different multipath mitigation techniques in some realistic measurement-based channel models, for example, the Land Multipath is undesirable for Global Navigation Satellite System (GNSS) receivers, since the reception of multipath can create a significant distortion to the shape of the correlation function leading to an error in the receivers’ position estimate. Many multipath mitigation techniques exist in the literature to deal with the multipath propagation problem in the context of GNSS. The multipath studies in the literature are often based on optimistic assumptions, for example, assuming a static two-path channel or a fading channel with a Rayleigh or a Nakagami distribution. But, in reality, there are a lot of channel modeling issues, for example, satellite-to-user geometry, variable number of paths, variable path delays and gains, Non Line-Of-Sight (NLOS) path condition, receiver movements, etc. that are kept out of consideration when analyzing the performance of these techniques. Therefore, this is of utmost importance to analyze the performance of different multipath mitigation techniques in some realistic measurement-based channel models, for example, the Land Mobile Satellite (LMS) channel model [1]-[4], developed at the German Aerospace Center (DLR). The DLR LMS channel model is widely used for simulating the positioning accuracy of mobile satellite navigation receivers in urban outdoor scenarios. The main objective of this paper is to present a comprehensive analysis of some of the most promising techniques with the DLR LMS channel model in varying multipath scenarios. Four multipath mitigation techniques are chosen herein for performance comparison, namely, the narrow Early-Minus-Late (nEML), the High Resolution Correlator, the C/N0-based two stage delay tracking technique, and the Reduced Search Space Maximum Likelihood (RSSML) delay estimator. The first two techniques are the most popular and traditional ones used in nowadays GNSS receivers, whereas the later two techniques are comparatively new and are advanced techniques, recently proposed by the authors. In addition, the implementation of the RSSML is optimized here for a narrow-bandwidth receiver configuration in the sense that it now requires a significantly less number of correlators and memory than its original implementation. The simulation results show that the reduced-complexity RSSML achieves the best multipath mitigation performance in moderate-to-good carrier-to-noise density ratio with the DLR LMS channel model in varying multipath scenarios

    Multipath Mitigation Techniques for Satellite-Based Positioning Applications

    Get PDF
    This chapter addressed the challenges encountered by a GNSS signal due to multipath propagation. A wide range of correlation-based multipath mitigation techniques were discussed and the performance of some of these techniques were evaluated in terms of running average error and root-mean-square error. Among the analyzed multipath mitigation techniques, RSSML, in general, achieved the best multipath mitigation performance in moderate-to-high C/N0 scenarios (for example, 30 dB-Hz and onwards). The other techniques, such as PT(Diff2) and HRC showed good multipath mitigation performance only in high C/N0 scenarios (for example, 40 dB-Hz and onwards). The other new technique SBME offered slightly better multipath mitigation performance to the well-known nEML DLL at the cost of an additional correlator. However, as the GNSS research area is fast evolving with many potential applications, it remains a challenging topic for future research to investigate the feasibility of these multipath mitigation techniques with the multitude of signal modulations, spreading codes, and spectrum placements that are (or are to be) proposed.publishedVersionPeer reviewe

    Robust Positioning in the Presence of Multipath and NLOS GNSS Signals

    Get PDF
    GNSS signals can be blocked and reflected by nearby objects, such as buildings, walls, and vehicles. They can also be reflected by the ground and by water. These effects are the dominant source of GNSS positioning errors in dense urban environments, though they can have an impact almost anywhere. Non- line-of-sight (NLOS) reception occurs when the direct path from the transmitter to the receiver is blocked and signals are received only via a reflected path. Multipath interference occurs, as the name suggests, when a signal is received via multiple paths. This can be via the direct path and one or more reflected paths, or it can be via multiple reflected paths. As their error characteristics are different, NLOS and multipath interference typically require different mitigation techniques, though some techniques are applicable to both. Antenna design and advanced receiver signal processing techniques can substantially reduce multipath errors. Unless an antenna array is used, NLOS reception has to be detected using the receiver's ranging and carrier-power-to-noise-density ratio (C/N0) measurements and mitigated within the positioning algorithm. Some NLOS mitigation techniques can also be used to combat severe multipath interference. Multipath interference, but not NLOS reception, can also be mitigated by comparing or combining code and carrier measurements, comparing ranging and C/N0 measurements from signals on different frequencies, and analyzing the time evolution of the ranging and C/N0 measurements

    Cross-Correlation-Function-Based Multipath Mitigation Method for Sine-BOC Signals

    Get PDF
    Global Navigation Satellite Systems (GNSS) positioning accuracy indoor and urban canyons environments are greatly affected by multipath due to distortions in its autocorrelation function. In this paper, a cross-correlation function between the received sine phased Binary Offset Carrier (sine-BOC) modulation signal and the local signal is studied firstly, and a new multipath mitigation method based on cross-correlation function for sine-BOC signal is proposed. This method is implemented to create a cross-correlation function by designing the modulated symbols of the local signal. The theoretical analysis and simulation results indicate that the proposed method exhibits better multipath mitigation performance compared with the traditional Double Delta Correlator (DDC) techniques, especially the medium/long delay multipath signals, and it is also convenient and flexible to implement by using only one correlator, which is the case of low-cost mass-market receivers

    An Efficient Method for GPS Multipath Mitigation Using the Teager-Kaiser-Operator-based MEDLL

    Get PDF
    An efficient method for GPS multipath mitigation is proposed. The motivation for this proposed method is to integrate the Teager-Kaiser Operator (TKO) with the Multipath Estimating Delay Lock Loop (MEDLL) module to mitigate the GPS multipath efficiently. The general implementation process of the proposed method is that we first utilize the TKO to operate on the received signal’s Auto-Correlation Function (ACF) to get an initial estimate of the multipaths. Then we transfer the initial estimated results to the MEDLL module for a further estimation. Finally, with a few iterations which are less than those of the original MEDLL algorithm, we can get a more accurate estimate of the Line-Of-Sight (LOS) signal, and thus the goal of the GPS multipath mitigation is achieved. The simulation results show that compared to the original MEDLL algorithm, the proposed method can reduce the computation load and the hardware and/or software consumption of the MEDLL module, meanwhile, without decreasing the algorithm accuracy

    Review on Sparse-Based Multipath Estimation and Mitigation: Intense Solution to Counteract the Effects in Software GPS Receivers

    Get PDF
    Multipath is the major concern in GPS receivers that fade the actual GPS signal causes positioning error up to 10 m so special care need to be taken to mitigate the multipath effects. Numerous methods like hardware based antenna arrays technique, receiver based narrow correlator receiver, double -delta discriminator, Adaptive Multipath Estimator, Wavelet Transformation and Particle filter, Kalman filter based post receiver methods etc. used to resolve the problem. But some of the methods can only reduce code multipath error but not effective in eliminating carrier multipath error. Most of these techniques are based on the assumption that the Line-of-Sight (LOS) signal is stronger than the Non-Line of-Sight (NLOS) signals. However, in the scenarios where the LOS signal is weaker than the composite multipath signal, this approach may result in a bias in code tracking. In this chapter, different types of multipath mitigation and its limitation are described. The recent development in sparse signal processing based blind channel estimation is investigated to compensate the multipath error. The Rayleigh and Rician fading model with different multipath parameters are simulated to test the urban scenario. The inverse problem of finding the GPS signal is addressed based on the deconvolution approach. To solve linear inverse problems, the suitable kind of appropriate objective function has been formulated to find the signal of interest. By exploiting this methods, the signal is observed and the carrier and code tracking loop parameters are computed with minimal error

    Improvement of mobile trilateration accuracy with modified geo-location techniques.

    Get PDF
    Masters Degree. University of KwaZulu-Natal, Durban.Abstract available in pdf

    Mitigating the Effects of Ionospheric Scintillation on GPS Carrier Recovery

    Get PDF
    Ionospheric scintillation is a phenomenon caused by varying concentrations of charged particles in the upper atmosphere that induces deep fades and rapid phase rotations in satellite signals, including GPS. During periods of scintillation, carrier tracking loops often lose lock on the signal because the rapid phase rotations generate cycle slips in the PLL. One solution to mitigating this problem is by employing decision-directed carrier recovery algorithms that achieve data wipe-off using differential bit detection techniques. Other techniques involve PLLs with variable bandwidth and variable integration times. Since nearly 60% of the GPS signal repeats between frames, this thesis explores PLLs utilizing variable integration times and decision-directed algorithms that exploit the repeating data as a training sequence to aid in phase error estimation. Experiments conducted using a GPS signal generator, software radio, and MATLAB scintillation testbed compare the bit error rate of each of the receiver models. Training-based methods utilizing variable integration times show significant reductions in the likelihood of total loss of lock

    Linear-Combined-Code-Based Unambiguous Code Discriminator Design for Multipath Mitigation in GNSS Receivers

    Get PDF
    Unambiguous tracking and multipath mitigation for Binary Offset Carrier (BOC) signals are two important requirements of modern Global Navigation Satellite Systems (GNSS) receivers. A GNSS discriminator design method based on optimization technique is proposed in this paper to meet these requirements. Firstly, the discriminator structure based on a linear-combined code is given. Then the requirements of ideal discriminator function are converted into the mathematical constraints and the objective function to form a non-linear optimization problem. Finally, the problem is solved and the local code is generated according to the results. The theoretical analysis and simulation results indicate that the proposed method can completely remove the false lock points for BOC signals and provide superior multipath mitigation performance compared with traditional discriminator and high revolution correlator (HRC) technique. Moreover, the proposed discriminator is easy to implement for not increasing the number of correlators

    Modeling the Effects of the Local Environment on a Received GNSS Signal

    Get PDF
    There is an ongoing need in the GNSS community for the development of high-fidelity simulators which generate data that replicates what can truly be expected from a challenging environment such as an urban canyon or an indoor environment. The algorithm developed for use in the research in this dissertation, the Signal Decomposition and Parameterization Algorithm (SDPA), is presented in order to respond to this need. This algorithm is designed to decompose a signal received using a GNSS recording and playback system and output parameters that can be used to reconstruct the effects on the signal of the environment local to the receiver at the time of recording. The SDPA itself is presented and compared with what is believed to be the state-of-the-art in GNSS multipath parameterization, a Space Alternating Generalized Expectation Maximization (SAGE) algorithm. The development and characterization of a stopping criteria that can be used to halt the SDPA when parameterization of salient components within a recorded signal has been completed
    • …
    corecore