161,277 research outputs found

    Character-level Recurrent Neural Networks in Practice: Comparing Training and Sampling Schemes

    Get PDF
    Recurrent neural networks are nowadays successfully used in an abundance of applications, going from text, speech and image processing to recommender systems. Backpropagation through time is the algorithm that is commonly used to train these networks on specific tasks. Many deep learning frameworks have their own implementation of training and sampling procedures for recurrent neural networks, while there are in fact multiple other possibilities to choose from and other parameters to tune. In existing literature this is very often overlooked or ignored. In this paper we therefore give an overview of possible training and sampling schemes for character-level recurrent neural networks to solve the task of predicting the next token in a given sequence. We test these different schemes on a variety of datasets, neural network architectures and parameter settings, and formulate a number of take-home recommendations. The choice of training and sampling scheme turns out to be subject to a number of trade-offs, such as training stability, sampling time, model performance and implementation effort, but is largely independent of the data. Perhaps the most surprising result is that transferring hidden states for correctly initializing the model on subsequences often leads to unstable training behavior depending on the dataset.Comment: 23 pages, 11 figures, 4 table

    Learning Large-scale Neural Fields via Context Pruned Meta-Learning

    Full text link
    We introduce an efficient optimization-based meta-learning technique for large-scale neural field training by realizing significant memory savings through automated online context point selection. This is achieved by focusing each learning step on the subset of data with the highest expected immediate improvement in model quality, resulting in the almost instantaneous modeling of global structure and subsequent refinement of high-frequency details. We further improve the quality of our meta-learned initialization by introducing a bootstrap correction resulting in the minimization of any error introduced by reduced context sets while simultaneously mitigating the well-known myopia of optimization-based meta-learning. Finally, we show how gradient re-scaling at meta-test time allows the learning of extremely high-quality neural fields in significantly shortened optimization procedures. Our framework is model-agnostic, intuitive, straightforward to implement, and shows significant reconstruction improvements for a wide range of signals. We provide an extensive empirical evaluation on nine datasets across multiple multiple modalities, demonstrating state-of-the-art results while providing additional insight through careful analysis of the algorithmic components constituting our method. Code is available at https://github.com/jihoontack/GradNCPComment: Published as a conference proceeding for NeurIPS 202

    Objective acceleration for unconstrained optimization

    Full text link
    Acceleration schemes can dramatically improve existing optimization procedures. In most of the work on these schemes, such as nonlinear Generalized Minimal Residual (N-GMRES), acceleration is based on minimizing the â„“2\ell_2 norm of some target on subspaces of Rn\mathbb{R}^n. There are many numerical examples that show how accelerating general purpose and domain-specific optimizers with N-GMRES results in large improvements. We propose a natural modification to N-GMRES, which significantly improves the performance in a testing environment originally used to advocate N-GMRES. Our proposed approach, which we refer to as O-ACCEL (Objective Acceleration), is novel in that it minimizes an approximation to the \emph{objective function} on subspaces of Rn\mathbb{R}^n. We prove that O-ACCEL reduces to the Full Orthogonalization Method for linear systems when the objective is quadratic, which differentiates our proposed approach from existing acceleration methods. Comparisons with L-BFGS and N-CG indicate the competitiveness of O-ACCEL. As it can be combined with domain-specific optimizers, it may also be beneficial in areas where L-BFGS or N-CG are not suitable.Comment: 18 pages, 6 figures, 5 table

    Magic-State Functional Units: Mapping and Scheduling Multi-Level Distillation Circuits for Fault-Tolerant Quantum Architectures

    Full text link
    Quantum computers have recently made great strides and are on a long-term path towards useful fault-tolerant computation. A dominant overhead in fault-tolerant quantum computation is the production of high-fidelity encoded qubits, called magic states, which enable reliable error-corrected computation. We present the first detailed designs of hardware functional units that implement space-time optimized magic-state factories for surface code error-corrected machines. Interactions among distant qubits require surface code braids (physical pathways on chip) which must be routed. Magic-state factories are circuits comprised of a complex set of braids that is more difficult to route than quantum circuits considered in previous work [1]. This paper explores the impact of scheduling techniques, such as gate reordering and qubit renaming, and we propose two novel mapping techniques: braid repulsion and dipole moment braid rotation. We combine these techniques with graph partitioning and community detection algorithms, and further introduce a stitching algorithm for mapping subgraphs onto a physical machine. Our results show a factor of 5.64 reduction in space-time volume compared to the best-known previous designs for magic-state factories.Comment: 13 pages, 10 figure
    • …
    corecore