298 research outputs found

    Code Construction and Decoding Algorithms for Semi-Quantitative Group Testing with Nonuniform Thresholds

    Full text link
    We analyze a new group testing scheme, termed semi-quantitative group testing, which may be viewed as a concatenation of an adder channel and a discrete quantizer. Our focus is on non-uniform quantizers with arbitrary thresholds. For the most general semi-quantitative group testing model, we define three new families of sequences capturing the constraints on the code design imposed by the choice of the thresholds. The sequences represent extensions and generalizations of Bh and certain types of super-increasing and lexicographically ordered sequences, and they lead to code structures amenable for efficient recursive decoding. We describe the decoding methods and provide an accompanying computational complexity and performance analysis

    Semi-Quantitative Group Testing for Efficient and Accurate qPCR Screening of Pathogens with a Wide Range of Loads

    Full text link
    Pathogenic infections pose a significant threat to global health, affecting millions of people every year and presenting substantial challenges to healthcare systems worldwide. Efficient and timely testing plays a critical role in disease control and transmission prevention. Group testing is a well-established method for reducing the number of tests needed to screen large populations when the disease prevalence is low. However, it does not fully utilize the quantitative information provided by qPCR methods, nor is it able to accommodate a wide range of pathogen loads. To address these issues, we introduce a novel adaptive semi-quantitative group testing (SQGT) scheme to efficiently screen populations via two-stage qPCR testing. The SQGT method quantizes cycle threshold (CtCt) values into multiple bins, leveraging the information from the first stage of screening to improve the detection sensitivity. Dynamic CtCt threshold adjustments mitigate dilution effects and enhance test accuracy. Comparisons with traditional binary outcome GT methods show that SQGT reduces the number of tests by 2424% while maintaining a negligible false negative rate.Comment: Corrected a misspelled name in the author list on page

    New group testing paradigms: from practice to theory

    Get PDF
    We propose a novel group testing framework, termed semi-quantitative group testing, motivated by a class of problems arising in genome screening experiments in addition to other applications such as interpretable rule learning for decision making. Semi-quantitative group testing (SQGT) is a (possibly) non-binary pooling scheme that may be viewed as a concatenation of an adder channel and an integer-valued quantizer. In its full generality, SQGT may be viewed as a unifying framework for group testing, in the sense that most group testing models are special instances of SQGT. For the new testing scheme, we define the notion of SQ-disjunct and SQ-separable test matrices, representing generalizations of classical disjunct and separable matrices. We describe combinatorial and probabilistic constructions for such matrices without considering any restriction on the thresholds of the SQGT model (i.e. SQGT with arbitrary thresholds). Then, we focus on the important special case in which the thresholds are equidistant, and construct SQ-disjunct and SQ-separable matrices for this model. While for most of the constructions described in this dissertation, it is assumed that the number of defectives is much smaller than total number of test subjects, we also consider the case in which there is no restriction on the number of defectives and they may be as large as the total number of subjects. For the constructed matrices, we describe a number of efficient decoding algorithms based on algebraic methods and message passing on graphical models. Finally, we introduce the novel probabilistic group testing framework of Poisson group testing, applicable to dynamic testing with diminishing relative rates of defectives. For this new model, we consider both nonadaptive and adaptive testing schemes and develop lower bounds and tight constructive upper bounds on the number of required tests

    Coding for storage and testing

    Get PDF
    The problem of reconstructing strings from substring information has found many applications due to its importance in genomic data sequencing and DNA- and polymer-based data storage. Motivated by platforms that use chains of binary synthetic polymers as the recording media and read the content via tandem mass spectrometers, we propose new a family of codes that allows for both unique string reconstruction and correction of multiple mass errors. We first consider the paradigm where the masses of substrings of the input string form the evidence set. We consider two approaches: The first approach pertains to asymmetric errors and the error-correction is achieved by introducing redundancy that scales linearly with the number of errors and logarithmically with the length of the string. The proposed construction allows for the string to be uniquely reconstructed based only on its erroneous substring composition multiset. The asymptotic code rate of the scheme is one, and decoding is accomplished via a simplified version of the Backtracking algorithm used for the Turnpike problem. For symmetric errors, we use a polynomial characterization of the mass information and adapt polynomial evaluation code constructions for this setting. In the process, we develop new efficient decoding algorithms for a constant number of composition errors. The second part of this dissertation addresses a practical paradigm that requires reconstructing mixtures of strings based on the union of compositions of their prefixes and suffixes, generated by mass spectrometry devices. We describe new coding methods that allow for unique joint reconstruction of subsets of strings selected from a code and provide upper and lower bounds on the asymptotic rate of the underlying codebooks. Our code constructions combine properties of binary BhB_h and Dyck strings and can be extended to accommodate missing substrings in the pool. In the final chapter of this dissertation, we focus on group testing. We begin with a review of the gold-standard testing protocol for Covid-19, real-time, reverse transcription PCR, and its properties and associated measurement data such as amplification curves that can guide the development of appropriate and accurate adaptive group testing protocols. We then proceed to examine various off-the-shelf group testing methods for Covid-19, and identify their strengths and weaknesses for the application at hand. Finally, we present a collection of new analytical results for adaptive semiquantitative group testing with combinatorial priors, including performance bounds, algorithmic solutions, and noisy testing protocols. The worst-case paradigm extends and improves upon prior work on semiquantitative group testing with and without specialized PCR noise models

    Hyperspectral Image Analysis through Unsupervised Deep Learning

    Get PDF
    Hyperspectral image (HSI) analysis has become an active research area in computer vision field with a wide range of applications. However, in order to yield better recognition and analysis results, we need to address two challenging issues of HSI, i.e., the existence of mixed pixels and its significantly low spatial resolution (LR). In this dissertation, spectral unmixing (SU) and hyperspectral image super-resolution (HSI-SR) approaches are developed to address these two issues with advanced deep learning models in an unsupervised fashion. A specific application, anomaly detection, is also studied, to show the importance of SU.Although deep learning has achieved the state-of-the-art performance on supervised problems, its practice on unsupervised problems has not been fully developed. To address the problem of SU, an untied denoising autoencoder is proposed to decompose the HSI into endmembers and abundances with non-negative and abundance sum-to-one constraints. The denoising capacity is incorporated into the network with a sparsity constraint to boost the performance of endmember extraction and abundance estimation.Moreover, the first attempt is made to solve the problem of HSI-SR using an unsupervised encoder-decoder architecture by fusing the LR HSI with the high-resolution multispectral image (MSI). The architecture is composed of two encoder-decoder networks, coupled through a shared decoder, to preserve the rich spectral information from the HSI network. It encourages the representations from both modalities to follow a sparse Dirichlet distribution which naturally incorporates the two physical constraints of HSI and MSI. And the angular difference between representations are minimized to reduce the spectral distortion.Finally, a novel detection algorithm is proposed through spectral unmixing and dictionary based low-rank decomposition, where the dictionary is constructed with mean-shift clustering and the coefficients of the dictionary is encouraged to be low-rank. Experimental evaluations show significant improvement on the performance of anomaly detection conducted on the abundances (through SU).The effectiveness of the proposed approaches has been evaluated thoroughly by extensive experiments, to achieve the state-of-the-art results

    Bits from Biology for Computational Intelligence

    Get PDF
    Computational intelligence is broadly defined as biologically-inspired computing. Usually, inspiration is drawn from neural systems. This article shows how to analyze neural systems using information theory to obtain constraints that help identify the algorithms run by such systems and the information they represent. Algorithms and representations identified information-theoretically may then guide the design of biologically inspired computing systems (BICS). The material covered includes the necessary introduction to information theory and the estimation of information theoretic quantities from neural data. We then show how to analyze the information encoded in a system about its environment, and also discuss recent methodological developments on the question of how much information each agent carries about the environment either uniquely, or redundantly or synergistically together with others. Last, we introduce the framework of local information dynamics, where information processing is decomposed into component processes of information storage, transfer, and modification -- locally in space and time. We close by discussing example applications of these measures to neural data and other complex systems

    ИНТЕЛЛЕКТУАЛЬНЫЙ числовым программным ДЛЯ MIMD-компьютер

    Get PDF
    For most scientific and engineering problems simulated on computers the solving of problems of the computational mathematics with approximately given initial data constitutes an intermediate or a final stage. Basic problems of the computational mathematics include the investigating and solving of linear algebraic systems, evaluating of eigenvalues and eigenvectors of matrices, the solving of systems of non-linear equations, numerical integration of initial- value problems for systems of ordinary differential equations.Для більшості наукових та інженерних задач моделювання на ЕОМ рішення задач обчислювальної математики з наближено заданими вихідними даними складає проміжний або остаточний етап. Основні проблеми обчислювальної математики відносяться дослідження і рішення лінійних алгебраїчних систем оцінки власних значень і власних векторів матриць, рішення систем нелінійних рівнянь, чисельного інтегрування початково задач для систем звичайних диференціальних рівнянь.Для большинства научных и инженерных задач моделирования на ЭВМ решение задач вычислительной математики с приближенно заданным исходным данным составляет промежуточный или окончательный этап. Основные проблемы вычислительной математики относятся исследования и решения линейных алгебраических систем оценки собственных значений и собственных векторов матриц, решение систем нелинейных уравнений, численного интегрирования начально задач для систем обыкновенных дифференциальных уравнений

    Amplitude modulation depth discrimination in hearing-impaired and normal-hearing listeners

    Get PDF
    corecore