331 research outputs found

    Packet Size Optimization for Multiple Input Multiple Output Cognitive Radio Sensor Networks aided Internet of Things

    Get PDF
    The determination of Optimal Packet Size (OPS) for Cognitive Radio assisted Sensor Networks (CRSNs) architecture is non-trivial. State of the art in this area describes various complex techniques to determine OPS for CRSNs. However, it is observed that under high interference from the surrounding users, it is not possible to determine a feasible optimal packet size of data transmission under the simple point-to-point CRSN network topology. This is contributed primarily due to the peak transmit power constraint of the cognitive nodes. To address this specific challenge, this paper proposes a Multiple Input Multiple Output based Cognitive Radio Sensor Networks (MIMO-CRSNs) architecture for futuristic technologies like Internet of Things (IoT) and machine-to-machine (M2M) communications. A joint optimization problem is formulated taking into account network constraints like the overall end to end latency, interference duration caused to the non-cognitive users, average BER and transmit power.We propose our Algorithm-1 based on generic exhaustive search technique blue to solve the optimization problem. Furthermore, a low complexity suboptimal Algorithm-2 based on solving classical Karush-Kuhn-Tucker (KKT) conditions is proposed. These algorithms for MIMO-CRSNs are implemented in conjunction with two different channel access schemes. These channel access schemes are Time Slotted Distributed Cognitive Medium Access Control denoted as MIMO-DTS-CMAC and CSMA/CA assisted Centralized Common Control Channel based Cognitive Medium Access Control denoted as MIMO-CC-CMAC. Simulations reveal that the proposed MIMO based CRSN network outperforms the conventional point-to-point CRSN network in terms of overall energy consumption. Moreover, the proposed Algorithm-1 and Algorithm2 shows perfect match and the implementation complexity of Algorithm-2 is much lesser than Algorithm-1. Algorithm-1 takes almost 680 ms to execute and provides OPS value for a given number of users while Algorithm- 2 takes 4 to 5 ms on an average to find the optimal packet size for the proposed MIMO-CRSN framework

    Big data analytics for large-scale wireless networks: Challenges and opportunities

    Full text link
    © 2019 Association for Computing Machinery. The wide proliferation of various wireless communication systems and wireless devices has led to the arrival of big data era in large-scale wireless networks. Big data of large-scale wireless networks has the key features of wide variety, high volume, real-time velocity, and huge value leading to the unique research challenges that are different from existing computing systems. In this article, we present a survey of the state-of-art big data analytics (BDA) approaches for large-scale wireless networks. In particular, we categorize the life cycle of BDA into four consecutive stages: Data Acquisition, Data Preprocessing, Data Storage, and Data Analytics. We then present a detailed survey of the technical solutions to the challenges in BDA for large-scale wireless networks according to each stage in the life cycle of BDA. Moreover, we discuss the open research issues and outline the future directions in this promising area

    Airborne Directional Networking: Topology Control Protocol Design

    Get PDF
    This research identifies and evaluates the impact of several architectural design choices in relation to airborne networking in contested environments related to autonomous topology control. Using simulation, we evaluate topology reconfiguration effectiveness using classical performance metrics for different point-to-point communication architectures. Our attention is focused on the design choices which have the greatest impact on reliability, scalability, and performance. In this work, we discuss the impact of several practical considerations of airborne networking in contested environments related to autonomous topology control modeling. Using simulation, we derive multiple classical performance metrics to evaluate topology reconfiguration effectiveness for different point-to-point communication architecture attributes for the purpose of qualifying protocol design elements

    On energy efficiency of routing with cooperative transmissions

    Get PDF
    Cooperative transmissions emulating multi-antenna systems may help reduce the total energy consumption in wireless networks. In this thesis, we define a virtual multiple-input single-output (vMISO) link to be established when a group of nodes (transmitters) jointly enable space-time communications with a single receiver. There has been plethora of research investigating physical layer issues of such systems; however, higher layer protocols that exploit vMISO links in ad hoc networks are still emerging. We present a novel approach in characterizing the optimal multi-hop vMISO routing in ad hoc networks. The key advantages of vMISO links that we exploit are the increase in transmission range and the decrease in the required transmission energy due to diversity gain. Specifically, under a high node density regime, we solve a nonlinear program that minimizes the total energy cost of reliable end-to-end transmissions by selecting the optimal cooperation set and the location of the next relay node at each hop. We characterize the optimal solution with respect to the reliability of the links, and for different fixed node transmission powers. Our results indicate that a multi-hop vMISO system is energy efficient only when a few nodes cooperate at each hop. We design a new greedy geographical vMISO routing protocol that is also suitable for sparse networks using the results determined under high node density regime. Also, we consider the network lifetime maximization problem in networks employing vMISO links. We formulated the network lifetime maximization with vMISO routing as a nonlinear program. Then, we presented a novel cooperation set selection and flow augmentation based routing heuristic that can significantly increase the network lifetime compared to Single-Input Single-Output (SISO) systems

    Towards Tactile Internet in Beyond 5G Era: Recent Advances, Current Issues and Future Directions

    Get PDF
    Tactile Internet (TI) is envisioned to create a paradigm shift from the content-oriented communications to steer/control-based communications by enabling real-time transmission of haptic information (i.e., touch, actuation, motion, vibration, surface texture) over Internet in addition to the conventional audiovisual and data traffics. This emerging TI technology, also considered as the next evolution phase of Internet of Things (IoT), is expected to create numerous opportunities for technology markets in a wide variety of applications ranging from teleoperation systems and Augmented/Virtual Reality (AR/VR) to automotive safety and eHealthcare towards addressing the complex problems of human society. However, the realization of TI over wireless media in the upcoming Fifth Generation (5G) and beyond networks creates various non-conventional communication challenges and stringent requirements in terms of ultra-low latency, ultra-high reliability, high data-rate connectivity, resource allocation, multiple access and quality-latency-rate tradeoff. To this end, this paper aims to provide a holistic view on wireless TI along with a thorough review of the existing state-of-the-art, to identify and analyze the involved technical issues, to highlight potential solutions and to propose future research directions. First, starting with the vision of TI and recent advances and a review of related survey/overview articles, we present a generalized framework for wireless TI in the Beyond 5G Era including a TI architecture, the main technical requirements, the key application areas and potential enabling technologies. Subsequently, we provide a comprehensive review of the existing TI works by broadly categorizing them into three main paradigms; namely, haptic communications, wireless AR/VR, and autonomous, intelligent and cooperative mobility systems. Next, potential enabling technologies across physical/Medium Access Control (MAC) and network layers are identified and discussed in detail. Also, security and privacy issues of TI applications are discussed along with some promising enablers. Finally, we present some open research challenges and recommend promising future research directions
    • …
    corecore