117 research outputs found

    Wireless Cellular Networks

    No full text
    When aiming for achieving high spectral efficiency in wireless cellular networks, cochannel interference (CCI) becomes the dominant performancelimiting factor. This article provides a survey of CCI mitigation techniques, where both active and passive approaches are discussed in the context of both open- and closed-loop designs.More explicitly, we considered both the family of flexible frequency-reuse (FFR)-aided and dynamic channel allocation (DCA)-aided interference avoidance techniques as well as smart antenna-aided interference mitigation techniques, which may be classified as active approach

    Distributed probabilistic-data-association-based soft reception employing base station cooperation in MIMO-aided multiuser multicell systems

    No full text
    Intercell cochannel interference (CCI) mitigation is investigated in the context of cellular systems relying on dense frequency reuse (FR). A distributed base-station (BS)-cooperation-aided soft reception scheme using the probabilistic data association (PDA) algorithm and soft combining (SC) is proposed for the uplink of multiuser multicell MIMO systems. The realistic 19-cell hexagonal cellular model relying on unity FR is considered, where both the BSs and the mobile stations (MSs) are equipped with multiple antennas. Local-cooperation-based message passing is used, instead of a global message passing chain for the sake of reducing the backhaul traffic. The PDA algorithm is employed as a low-complexity solution for producing soft information, which facilitates the employment of SC at the individual BSs to generate the final soft decision metric. Our simulations and analysis demonstrate that, despite its low additional complexity and backhaul traffic, the proposed distributed PDA-aided SC (DPDA-SC) reception scheme significantly outperforms the conventional noncooperative benchmarkers. Furthermore, since only the index of the possible discrete value of the quantized converged soft information has to be exchanged for SC in practice, the proposed DPDA-SC scheme is relatively robust to the quantization errors of the soft information exchanged. As a beneficial result, the backhaul traffic is dramatically reduced at negligible performance degradation

    Adaptive Spatial Intercell Interference Cancellation in Multicell Wireless Networks

    Full text link
    Downlink spatial intercell interference cancellation (ICIC) is considered for mitigating other-cell interference using multiple transmit antennas. A principle question we explore is whether it is better to do ICIC or simply standard single-cell beamforming. We explore this question analytically and show that beamforming is preferred for all users when the edge SNR (signal-to-noise ratio) is low (<0<0 dB), and ICIC is preferred when the edge SNR is high (>10>10 dB), for example in an urban setting. At medium SNR, a proposed adaptive strategy, where multiple base stations jointly select transmission strategies based on the user location, outperforms both while requiring a lower feedback rate than the pure ICIC approach. The employed metric is sum rate, which is normally a dubious metric for cellular systems, but surprisingly we show that even with this reward function the adaptive strategy also improves fairness. When the channel information is provided by limited feedback, the impact of the induced quantization error is also investigated. It is shown that ICIC with well-designed feedback strategies still provides significant throughput gain.Comment: 26 pages, submitted to IEEE J. Select. Areas Commun. special issue on Cooperative Communications in MIMO Cellular Networks, Sept. 200

    Imperfect Digital Fibre Optic Link Based Cooperative Distributed Antennas with Fractional Frequency Reuse in Multicell Multiuser Networks

    No full text
    The achievable throughput of the entire cellular area is investigated, when employing fractional frequency reuse techniques in conjunction with realistically modelled imperfect optical fibre aided distributed antenna systems (DAS) operating in a multicell multiuser scenario. Given a fixed total transmit power, a substantial improvement of the cell-edge area's throughput can be achieved without reducing the cell-centre's throughput. The cell-edge's throughput supported in the worst-case direction is significantly enhanced by the cooperative linear transmit processing technique advocated. Explicitly, a cell-edge throughput of η=5\eta=5 bits/s/Hz may be maintained for an imperfect optical fibre model, regardless of the specific geographic distribution of the users

    Coordinated Multicast Beamforming in Multicell Networks

    Full text link
    We study physical layer multicasting in multicell networks where each base station, equipped with multiple antennas, transmits a common message using a single beamformer to multiple users in the same cell. We investigate two coordinated beamforming designs: the quality-of-service (QoS) beamforming and the max-min SINR (signal-to-interference-plus-noise ratio) beamforming. The goal of the QoS beamforming is to minimize the total power consumption while guaranteeing that received SINR at each user is above a predetermined threshold. We present a necessary condition for the optimization problem to be feasible. Then, based on the decomposition theory, we propose a novel decentralized algorithm to implement the coordinated beamforming with limited information sharing among different base stations. The algorithm is guaranteed to converge and in most cases it converges to the optimal solution. The max-min SINR (MMS) beamforming is to maximize the minimum received SINR among all users under per-base station power constraints. We show that the MMS problem and a weighted peak-power minimization (WPPM) problem are inverse problems. Based on this inversion relationship, we then propose an efficient algorithm to solve the MMS problem in an approximate manner. Simulation results demonstrate significant advantages of the proposed multicast beamforming algorithms over conventional multicasting schemes.Comment: 10pages, 9 figure

    Cooperative Downlink Multicell Preprocessing Relying on Reduced-Rate Back-Haul Data Exchange

    No full text
    Different-complexity multicell preprocessing (MCP) schemes employing distributed signal-to-interference leakageplus-noise ratio (SILNR) precoding techniques are proposed, which require reduced back-haul data exchange in comparison with the conventional MCP structure. Our results demonstrate that the proposed structures are capable of increasing the throughput achievable in the cell-edge area while offering different geographic rate profile distributions, as well as meeting different delay requirements

    Massive MIMO Multicasting in Noncooperative Cellular Networks

    Full text link
    We study the massive multiple-input multiple-output (MIMO) multicast transmission in cellular networks where each base station (BS) is equipped with a large-scale antenna array and transmits a common message using a single beamformer to multiple mobile users. We first show that when each BS knows the perfect channel state information (CSI) of its own served users, the asymptotically optimal beamformer at each BS is a linear combination of the channel vectors of its multicast users. Moreover, the optimal combining coefficients are obtained in closed form. Then we consider the imperfect CSI scenario where the CSI is obtained through uplink channel estimation in timedivision duplex systems. We propose a new pilot scheme that estimates the composite channel which is a linear combination of the individual channels of multicast users in each cell. This scheme is able to completely eliminate pilot contamination. The pilot power control for optimizing the multicast beamformer at each BS is also derived. Numerical results show that the asymptotic performance of the proposed scheme is close to the ideal case with perfect CSI. Simulation also verifies the effectiveness of the proposed scheme with finite number of antennas at each BS.Comment: to appear in IEEE JSAC Special Issue on 5G Wireless Communication System

    Digital RoF Aided Cooperative Distributed Antennas with FFR in Multicell Multiuser Networks

    No full text
    The achievable throughput of the entire cellular area is investigated, when employing fractional frequency reuse techniques in conjunction with realistically modelled imperfect optical fibre aided distributed antenna systems (DAS). Given a fixed total transmit power, a substantial improvement of the cell-edge area’s throughput can be achieved without reducing the cell-centre’s throughput. The cell-edge’s throughput supported in the worst-case direction is significantly enhanced by the cooperative linear transmit processing technique advocated. Explicitly, a cell-edge throughput of η = 5 bits/s/Hz may be maintained for a imperfect optical fibre model, regardless of the specific geographic distribution of the users
    corecore