2,962 research outputs found

    A Coastal Retracking System for Satellite Radar Altimeter Waveforms: Application to ERS-2 Around Australia

    Get PDF
    Satellite radar altimeter-derived sea surface heights (SSH) are in error in coastal regions due, in part, to the complex nature of echoes returned from rapidly varying land and sea surfaces. This paper presents improved altimeter-derived SSH results in Australian coastal regions using the waveform retracking technique, which reprocesses the waveform data through a “coastal retracking system”. The system, based upon a systematic analysis of satellite radar altimeter waveforms around Australia, improves SSH data from several retrackers depending on the waveforms' characteristics. Central to the system is the use of two techniques: the least squares fitting and the threshold retracking algorithms. To overcome the problem of fading noise, the fitting algorithm has been developed to include a weighted iterative scheme. The retrackers include five fitting models and the threshold method with varying threshold levels. A waveform classification procedure has also been developed, which enables the waveforms to be sorted and then retracked by an appropriate retracker. Two cycles of 20-Hz waveform data from ERS-2 have been reprocessed using this system to obtain the improved SSH estimates. Using the AUSGeoid98 gravimetric geoid model as a quasi-independent reference, the system improves SSH estimates from beyond ∼22 km to beyond ∼5 km from the coastline

    Large-scale phenomena, chapter 3, part D

    Get PDF
    Oceanic phenomena with horizontal scales from approximately 100 km up to the widths of the oceans themselves are examined. Data include: shape of geoid, quasi-stationary anomalies due to spatial variations in sea density and steady current systems, and the time dependent variations due to tidal and meteorological forces and to varying currents

    Technical approaches, chapter 3, part E

    Get PDF
    Radar altimeters, scatterometers, and imaging radar are described in terms of their functions, future developments, constraints, and applications

    Radar altimetry systems cost analysis

    Get PDF
    This report discusses the application and cost of two types of altimeter systems (spaceborne (satellite and shuttle) and airborne) to twelve user requirements. The overall design of the systems defined to meet these requirements is predicated on an unconstrained altimetry technology; that is, any level of altimeter or supporting equipment performance is possible

    Data Requirements for Oceanic Processes in the Open Ocean, Coastal Zone, and Cryosphere

    Get PDF
    The type of information system that is needed to meet the requirements of ocean, coastal, and polar region users was examined. The requisite qualities of the system are: (1) availability, (2) accessibility, (3) responsiveness, (4) utility, (5) continuity, and (6) NASA participation. The system would not displace existing capabilities, but would have to integrate and expand the capabilities of existing systems and resolve the deficiencies that currently exist in producer-to-user information delivery options

    Science opportunities from the Topex/Poseidon mission

    Get PDF
    The U.S. National Aeronautics and Space Administration (NASA) and the French Centre National d'Etudes Spatiales (CNES) propose to conduct a Topex/Poseidon Mission for studying the global ocean circulation from space. The mission will use the techniques of satellite altimetry to make precise and accurate measurements of sea level for several years. The measurements will then be used by Principal Investigators (selected by NASA and CNES) and by the wider oceanographic community working closely with large international programs for observing the Earth, on studies leading to an improved understanding of global ocean dynamics and the interaction of the ocean with other processes influencing life on Earth. The major elements of the mission include a satellite carrrying an altimetric system for measuring the height of the satellite above the sea surface; a precision orbit determination system for referring the altimetric measurements to geodetic coordinates; a data analysis and distribution system for processing the satellite data, verifying their accuracy, and making them available to the scientific community; and a principal investigator program for scientific studies based on the satellite observations. This document describes the satellite, its sensors, its orbit, the data analysis system, and plans for verifying and distributing the data. It then discusses the expected accuracy of the satellite's measurements and their usefulness to oceanographic, geophysical, and other scientific studies. Finally, it outlines the relationship of the Topex/Poseidon mission to other large programs, including the World Climate Research Program, the U.S. Navy's Remote Ocean Sensing System satellite program and the European Space Agency's ERS-1 satellite program

    Coastal Altimetry and Applications

    Get PDF
    This report was prepared by Dr. Michael Anzenhofer of the Geo-Forschungs-Zentrum (GFZ) Potsdam, Germany, while visiting the Department of Civil and Environmental Engineering and Geodetic Science (CEEGS), Ohio State University, during 1997-1998. The visit was hosted by Prof. C.K. Shum of the Department of Civil and Environmental Engineering and Geodetic Science.This work was partially supported by NASA Grant No.735366, Improved Ocean Radar Altimeter and Scatterometer Data Products for Global Change Studies and Coastal Application, and by a grant from GFZ, Prof. Christoph Reigber, Director
    corecore