767 research outputs found

    Joint Multi-Person Pose Estimation and Semantic Part Segmentation

    Full text link
    Human pose estimation and semantic part segmentation are two complementary tasks in computer vision. In this paper, we propose to solve the two tasks jointly for natural multi-person images, in which the estimated pose provides object-level shape prior to regularize part segments while the part-level segments constrain the variation of pose locations. Specifically, we first train two fully convolutional neural networks (FCNs), namely Pose FCN and Part FCN, to provide initial estimation of pose joint potential and semantic part potential. Then, to refine pose joint location, the two types of potentials are fused with a fully-connected conditional random field (FCRF), where a novel segment-joint smoothness term is used to encourage semantic and spatial consistency between parts and joints. To refine part segments, the refined pose and the original part potential are integrated through a Part FCN, where the skeleton feature from pose serves as additional regularization cues for part segments. Finally, to reduce the complexity of the FCRF, we induce human detection boxes and infer the graph inside each box, making the inference forty times faster. Since there's no dataset that contains both part segments and pose labels, we extend the PASCAL VOC part dataset with human pose joints and perform extensive experiments to compare our method against several most recent strategies. We show that on this dataset our algorithm surpasses competing methods by a large margin in both tasks.Comment: This paper has been accepted by CVPR 201

    SoccerNet: A Scalable Dataset for Action Spotting in Soccer Videos

    Full text link
    In this paper, we introduce SoccerNet, a benchmark for action spotting in soccer videos. The dataset is composed of 500 complete soccer games from six main European leagues, covering three seasons from 2014 to 2017 and a total duration of 764 hours. A total of 6,637 temporal annotations are automatically parsed from online match reports at a one minute resolution for three main classes of events (Goal, Yellow/Red Card, and Substitution). As such, the dataset is easily scalable. These annotations are manually refined to a one second resolution by anchoring them at a single timestamp following well-defined soccer rules. With an average of one event every 6.9 minutes, this dataset focuses on the problem of localizing very sparse events within long videos. We define the task of spotting as finding the anchors of soccer events in a video. Making use of recent developments in the realm of generic action recognition and detection in video, we provide strong baselines for detecting soccer events. We show that our best model for classifying temporal segments of length one minute reaches a mean Average Precision (mAP) of 67.8%. For the spotting task, our baseline reaches an Average-mAP of 49.7% for tolerances δ\delta ranging from 5 to 60 seconds. Our dataset and models are available at https://silviogiancola.github.io/SoccerNet.Comment: CVPR Workshop on Computer Vision in Sports 201

    Spott : on-the-spot e-commerce for television using deep learning-based video analysis techniques

    Get PDF
    Spott is an innovative second screen mobile multimedia application which offers viewers relevant information on objects (e.g., clothing, furniture, food) they see and like on their television screens. The application enables interaction between TV audiences and brands, so producers and advertisers can offer potential consumers tailored promotions, e-shop items, and/or free samples. In line with the current views on innovation management, the technological excellence of the Spott application is coupled with iterative user involvement throughout the entire development process. This article discusses both of these aspects and how they impact each other. First, we focus on the technological building blocks that facilitate the (semi-) automatic interactive tagging process of objects in the video streams. The majority of these building blocks extensively make use of novel and state-of-the-art deep learning concepts and methodologies. We show how these deep learning based video analysis techniques facilitate video summarization, semantic keyframe clustering, and (similar) object retrieval. Secondly, we provide insights in user tests that have been performed to evaluate and optimize the application's user experience. The lessons learned from these open field tests have already been an essential input in the technology development and will further shape the future modifications to the Spott application
    • …
    corecore