2,464 research outputs found

    Dynamical Complexity, Intermittent Turbulence, Coarse-Grained Dissipation, Criticality and Multifractal Processes

    Full text link
    The ideas of dynamical complexity induced intermittent turbulence by sporadic localized interactions of coherent structures are discussed. In particular, we address the phenomenon of magnetic reconfiguration due to coarse-grained dissipation as well as the interwoven connection between criticality and multifractal processes. Specific examples are provided.Comment: 6 pages, 2 figures, submitted to AIP Conference Proceedings for the 6th Annual International Astrophysics Conference, Honolulu, March 16-22, 200

    Fine Grained Component Engineering of Adaptive Overlays: Experiences and Perspectives

    Get PDF
    Recent years have seen significant research being carried out into peer-to-peer (P2P) systems. This work has focused on the styles and applications of P2P computing, from grid computation to content distribution; however, little investigation has been performed into how these systems are built. Component based engineering is an approach that has seen successful deployment in the field of middleware development; functionality is encapsulated in ‘building blocks’ that can be dynamically plugged together to form complete systems. This allows efficient, flexible and adaptable systems to be built with lower overhead and development complexity. This paper presents an investigation into the potential of using component based engineering in the design and construction of peer-to-peer overlays. It is highlighted that the quality of these properties is dictated by the component architecture used to implement the system. Three reusable decomposition architectures are designed and evaluated using Chord and Pastry case studies. These demonstrate that significant improvements can be made over traditional design approaches resulting in much more reusable, (re)configurable and extensible systems

    QUKU: A Coarse Grained Paradigm for FPGAs

    Get PDF
    To fill the gap between increasing demand for reconfigurability and performance efficiency, CGRAs are seen to be an emerging platform. The advantage lies in quick dynamic reconfiguration and power efficiency. Despite having these advantages they have failed to show their mark. This paper describes the QUKU architecture, which uses a coarse-grained dynamically reconfigurable PE array (CGRA) overlaid on an FPGA. The low-speed reconfigurability of the FPGA is used to optimize the CGRA for different applications, whilst the high-speed CGRA reconfiguration is used within an application for operator re-use
    • …
    corecore