58,361 research outputs found

    Development of spatial coarse-to-fine processing in the visual pathway

    Get PDF
    The sequential analysis of information in a coarse-to-fine manner is a fundamental mode of processing in the visual pathway. Spatial frequency (SF) tuning, arguably the most fundamental feature of spatial vision, provides particular intuition within the coarse-to-fine framework: low spatial frequencies convey global information about an image (e.g., general orientation), while high spatial frequencies carry more detailed information (e.g., edges). In this paper, we study the development of cortical spatial frequency tuning. As feedforward input from the lateral geniculate nucleus (LGN) has been shown to have significant influence on cortical coarse-to-fine processing, we present a firing-rate based thalamocortical model which includes both feedforward and feedback components. We analyze the relationship between various model parameters (including cortical feedback strength) and responses. We confirm the importance of the antagonistic relationship between the center and surround responses in thalamic relay cell receptive fields (RFs), and further characterize how specific structural LGN RF parameters affect cortical coarse-to-fine processing. Our results also indicate that the effect of cortical feedback on spatial frequency tuning is age-dependent: in particular, cortical feedback more strongly affects coarse-to-fine processing in kittens than in adults. We use our results to propose an experimentally testable hypothesis for the function of the extensive feedback in the corticothalamic circuit.Comment: 20 pages, 7 figures; substantial restructuring from previous versio

    Abnormal subgrain growth in a dislocation-based model of recovery

    Get PDF
    Simulation of subgrain growth during recovery is carried out using two-dimensional discrete dislocation dynamics on a hexagonal crystal lattice having three symmetric slip planes. To account for elevated temperature (i) dislocation climb was allowed and (ii) a Langevin type thermal noise was added to the force acting on the dislocations. During the simulation, a random ensemble of dislocations develop into subgrains and power-law type growth kinetics are observed. The growth exponent is found to be independent of the climb mobility, but dependent on the temperature introduced by the thermal noise. The in-depth statistical analysis of the subgrain structure shows that the coarsening is abnormal, i.e. larger cells grow faster than the small ones, while the average misorientation between the adjacent subgrains remains nearly constant. During the coarsening Holt's relation is found not to be fulfilled, such that the average subgrain size is not proportional to the average dislocation spacing. These findings are consistent with recent high precision experiments on recovery.Comment: 17 pages, 11 figure

    Nonlinear hydrodynamic theory of crystallization

    Get PDF
    We present an isothermal fluctuating nonlinear hydrodynamic theory of crystallization in molecular liquids. A dynamic coarse-graining technique is used to derive the velocity field, a phenomenology, which allows a direct coupling between the free energy functional of the classical Density Functional Theory and the Navier-Stokes equation. Contrary to the Ginzburg-Landau type amplitude theories, the dynamic response to elastic deformations is described by parameter-free kinetic equations. Employing our approach to the free energy functional of the Phase-Field Crystal model, we recover the classical spectrum for the phonons and the steady-state growth fronts. The capillary wave spectrum of the equilibrium crystal-liquid interface is in a good qualitative agreement with the molecular dynamics simulations

    Don't Just Listen, Use Your Imagination: Leveraging Visual Common Sense for Non-Visual Tasks

    Full text link
    Artificial agents today can answer factual questions. But they fall short on questions that require common sense reasoning. Perhaps this is because most existing common sense databases rely on text to learn and represent knowledge. But much of common sense knowledge is unwritten - partly because it tends not to be interesting enough to talk about, and partly because some common sense is unnatural to articulate in text. While unwritten, it is not unseen. In this paper we leverage semantic common sense knowledge learned from images - i.e. visual common sense - in two textual tasks: fill-in-the-blank and visual paraphrasing. We propose to "imagine" the scene behind the text, and leverage visual cues from the "imagined" scenes in addition to textual cues while answering these questions. We imagine the scenes as a visual abstraction. Our approach outperforms a strong text-only baseline on these tasks. Our proposed tasks can serve as benchmarks to quantitatively evaluate progress in solving tasks that go "beyond recognition". Our code and datasets are publicly available
    • …
    corecore