3,652 research outputs found

    Coalitions in Cooperative Wireless Networks

    Full text link
    Cooperation between rational users in wireless networks is studied using coalitional game theory. Using the rate achieved by a user as its utility, it is shown that the stable coalition structure, i.e., set of coalitions from which users have no incentives to defect, depends on the manner in which the rate gains are apportioned among the cooperating users. Specifically, the stability of the grand coalition (GC), i.e., the coalition of all users, is studied. Transmitter and receiver cooperation in an interference channel (IC) are studied as illustrative cooperative models to determine the stable coalitions for both flexible (transferable) and fixed (non-transferable) apportioning schemes. It is shown that the stable sum-rate optimal coalition when only receivers cooperate by jointly decoding (transferable) is the GC. The stability of the GC depends on the detector when receivers cooperate using linear multiuser detectors (non-transferable). Transmitter cooperation is studied assuming that all receivers cooperate perfectly and that users outside a coalition act as jammers. The stability of the GC is studied for both the case of perfectly cooperating transmitters (transferrable) and under a partial decode-and-forward strategy (non-transferable). In both cases, the stability is shown to depend on the channel gains and the transmitter jamming strengths.Comment: To appear in the IEEE Journal on Selected Areas in Communication, Special Issue on Game Theory in Communication Systems, 200

    Coalitional Games with Overlapping Coalitions for Interference Management in Small Cell Networks

    Full text link
    In this paper, we study the problem of cooperative interference management in an OFDMA two-tier small cell network. In particular, we propose a novel approach for allowing the small cells to cooperate, so as to optimize their sum-rate, while cooperatively satisfying their maximum transmit power constraints. Unlike existing work which assumes that only disjoint groups of cooperative small cells can emerge, we formulate the small cells' cooperation problem as a coalition formation game with overlapping coalitions. In this game, each small cell base station can choose to participate in one or more cooperative groups (or coalitions) simultaneously, so as to optimize the tradeoff between the benefits and costs associated with cooperation. We study the properties of the proposed overlapping coalition formation game and we show that it exhibits negative externalities due to interference. Then, we propose a novel decentralized algorithm that allows the small cell base stations to interact and self-organize into a stable overlapping coalitional structure. Simulation results show that the proposed algorithm results in a notable performance advantage in terms of the total system sum-rate, relative to the noncooperative case and the classical algorithms for coalitional games with non-overlapping coalitions

    Improving Macrocell - Small Cell Coexistence through Adaptive Interference Draining

    Full text link
    The deployment of underlay small base stations (SBSs) is expected to significantly boost the spectrum efficiency and the coverage of next-generation cellular networks. However, the coexistence of SBSs underlaid to an existing macro-cellular network faces important challenges, notably in terms of spectrum sharing and interference management. In this paper, we propose a novel game-theoretic model that enables the SBSs to optimize their transmission rates by making decisions on the resource occupation jointly in the frequency and spatial domains. This procedure, known as interference draining, is performed among cooperative SBSs and allows to drastically reduce the interference experienced by both macro- and small cell users. At the macrocell side, we consider a modified water-filling policy for the power allocation that allows each macrocell user (MUE) to focus the transmissions on the degrees of freedom over which the MUE experiences the best channel and interference conditions. This approach not only represents an effective way to decrease the received interference at the MUEs but also grants the SBSs tier additional transmission opportunities and allows for a more agile interference management. Simulation results show that the proposed approach yields significant gains at both macrocell and small cell tiers, in terms of average achievable rate per user, reaching up to 37%, relative to the non-cooperative case, for a network with 150 MUEs and 200 SBSs

    Spectrum Leasing as an Incentive towards Uplink Macrocell and Femtocell Cooperation

    Full text link
    The concept of femtocell access points underlaying existing communication infrastructure has recently emerged as a key technology that can significantly improve the coverage and performance of next-generation wireless networks. In this paper, we propose a framework for macrocell-femtocell cooperation under a closed access policy, in which a femtocell user may act as a relay for macrocell users. In return, each cooperative macrocell user grants the femtocell user a fraction of its superframe. We formulate a coalitional game with macrocell and femtocell users being the players, which can take individual and distributed decisions on whether to cooperate or not, while maximizing a utility function that captures the cooperative gains, in terms of throughput and delay.We show that the network can selforganize into a partition composed of disjoint coalitions which constitutes the recursive core of the game representing a key solution concept for coalition formation games in partition form. Simulation results show that the proposed coalition formation algorithm yields significant gains in terms of average rate per macrocell user, reaching up to 239%, relative to the non-cooperative case. Moreover, the proposed approach shows an improvement in terms of femtocell users' rate of up to 21% when compared to the traditional closed access policy.Comment: 29 pages, 11 figures, accepted at the IEEE JSAC on Femtocell Network

    Physical Layer Security: Coalitional Games for Distributed Cooperation

    Full text link
    Cooperation between wireless network nodes is a promising technique for improving the physical layer security of wireless transmission, in terms of secrecy capacity, in the presence of multiple eavesdroppers. While existing physical layer security literature answered the question "what are the link-level secrecy capacity gains from cooperation?", this paper attempts to answer the question of "how to achieve those gains in a practical decentralized wireless network and in the presence of a secrecy capacity cost for information exchange?". For this purpose, we model the physical layer security cooperation problem as a coalitional game with non-transferable utility and propose a distributed algorithm for coalition formation. Through the proposed algorithm, the wireless users can autonomously cooperate and self-organize into disjoint independent coalitions, while maximizing their secrecy capacity taking into account the security costs during information exchange. We analyze the resulting coalitional structures, discuss their properties, and study how the users can self-adapt the network topology to environmental changes such as mobility. Simulation results show that the proposed algorithm allows the users to cooperate and self-organize while improving the average secrecy capacity per user up to 25.32% relative to the non-cooperative case.Comment: Best paper Award at Wiopt 200

    A Distributed Merge and Split Algorithm for Fair Cooperation in Wireless Networks

    Full text link
    This paper introduces a novel concept from coalitional game theory which allows the dynamic formation of coalitions among wireless nodes. A simple and distributed merge and split algorithm for coalition formation is constructed. This algorithm is applied to study the gains resulting from the cooperation among single antenna transmitters for virtual MIMO formation. The aim is to find an ultimate transmitters coalition structure that allows cooperating users to maximize their utilities while accounting for the cost of coalition formation. Through this novel game theoretical framework, the wireless network transmitters are able to self-organize and form a structured network composed of disjoint stable coalitions. Simulation results show that the proposed algorithm can improve the average individual user utility by 26.4% as well as cope with the mobility of the distributed users.Comment: This paper is accepted for publication at the IEEE ICC Workshop on Cooperative Communications and Networkin

    Coalitional Game Theoretic Approach for Cooperative Transmission in Vehicular Networks

    Full text link
    Cooperative transmission in vehicular networks is studied by using coalitional game and pricing in this paper. There are several vehicles and roadside units (RSUs) in the networks. Each vehicle has a desire to transmit with a certain probability, which represents its data burtiness. The RSUs can enhance the vehicles' transmissions by cooperatively relaying the vehicles' data. We consider two kinds of cooperations: cooperation among the vehicles and cooperation between the vehicle and RSU. First, vehicles cooperate to avoid interfering transmissions by scheduling the transmissions of the vehicles in each coalition. Second, a RSU can join some coalition to cooperate the transmissions of the vehicles in that coalition. Moreover, due to the mobility of the vehicles, we introduce the notion of encounter between the vehicle and RSU to indicate the availability of the relay in space. To stimulate the RSU's cooperative relaying for the vehicles, the pricing mechanism is applied. A non-transferable utility (NTU) game is developed to analyze the behaviors of the vehicles and RSUs. The stability of the formulated game is studied. Finally, we present and discuss the numerical results for the 2-vehicle and 2-RSU scenario, and the numerical results verify the theoretical analysis.Comment: accepted by IEEE ICC'1

    Coalition Formation Games for Collaborative Spectrum Sensing

    Full text link
    Collaborative Spectrum Sensing (CSS) between secondary users (SUs) in cognitive networks exhibits an inherent tradeoff between minimizing the probability of missing the detection of the primary user (PU) and maintaining a reasonable false alarm probability (e.g., for maintaining a good spectrum utilization). In this paper, we study the impact of this tradeoff on the network structure and the cooperative incentives of the SUs that seek to cooperate for improving their detection performance. We model the CSS problem as a non-transferable coalitional game, and we propose distributed algorithms for coalition formation. First, we construct a distributed coalition formation (CF) algorithm that allows the SUs to self-organize into disjoint coalitions while accounting for the CSS tradeoff. Then, the CF algorithm is complemented with a coalitional voting game for enabling distributed coalition formation with detection probability guarantees (CF-PD) when required by the PU. The CF-PD algorithm allows the SUs to form minimal winning coalitions (MWCs), i.e., coalitions that achieve the target detection probability with minimal costs. For both algorithms, we study and prove various properties pertaining to network structure, adaptation to mobility and stability. Simulation results show that CF reduces the average probability of miss per SU up to 88.45% relative to the non-cooperative case, while maintaining a desired false alarm. For CF-PD, the results show that up to 87.25% of the SUs achieve the required detection probability through MWCComment: IEEE Transactions on Vehicular Technology, to appea

    Distributed Cooperative Sensing in Cognitive Radio Networks: An Overlapping Coalition Formation Approach

    Full text link
    Cooperative spectrum sensing has been shown to yield a significant performance improvement in cognitive radio networks. In this paper, we consider distributed cooperative sensing (DCS) in which secondary users (SUs) exchange data with one another instead of reporting to a common fusion center. In most existing DCS algorithms, the SUs are grouped into disjoint cooperative groups or coalitions, and within each coalition the local sensing data is exchanged. However, these schemes do not account for the possibility that an SU can be involved in multiple cooperative coalitions thus forming overlapping coalitions. Here, we address this problem using novel techniques from a class of cooperative games, known as overlapping coalition formation games, and based on the game model, we propose a distributed DCS algorithm in which the SUs self-organize into a desirable network structure with overlapping coalitions. Simulation results show that the proposed overlapping algorithm yields significant performance improvements, decreasing the total error probability up to 25% in the Q_m+Q_f criterion, the missed detection probability up to 20% in the Q_m/Q_f criterion, the overhead up to 80%, and the total report number up to 10%, compared with the state-of-the-art non-overlapping algorithm
    corecore