29 research outputs found

    Coalitional Games for Distributed Eavesdroppers Cooperation in Wireless Networks

    No full text
    International audiencePhysical layer security aspects of wireless networks have re- cently attracted an increased attention due to the emergence of large-scale decentralized networks. While most existing literature focuses on link-level performance analysis from the perspective of the wireless users, this paper turns the atten- tion to the eavesdroppers' (attacker) side of the problem. In this context, we introduce a model that enables a num- ber of single antenna eavesdroppers in a wireless network to cooperate, by performing distributed receive beamform- ing, for improving the damage that they inflict on the net- work's wireless users when tapping through their transmis- sions. We model the eavesdroppers cooperation problem as a non-transferable coalitional game and we propose a dis- tributed algorithm for coalition formation. The proposed algorithm allows the eavesdroppers to take autonomous deci- sions to cooperate and form coalitions, while maximizing the damage that they cause on the wireless users. This damage is quantified in terms of the overall secrecy capacity reduc- tion that the eavesdroppers incur on the users while taking into account cooperation costs in terms of the time required for information exchange. We analyze the resulting coali- tional structures, discuss their properties, and study how the eavesdroppers can adapt the topology to environmental changes such as mobility. Simulation results show that the proposed algorithm allows the eavesdroppers to cooperate and self-organize while achieving an improvement of the av- erage payoff per eavesdropper up to 27.6% per eavesdropping cycle relative to the non-cooperative case

    Physical Layer Security: Coalitional Games for Distributed Cooperation

    Full text link
    Cooperation between wireless network nodes is a promising technique for improving the physical layer security of wireless transmission, in terms of secrecy capacity, in the presence of multiple eavesdroppers. While existing physical layer security literature answered the question "what are the link-level secrecy capacity gains from cooperation?", this paper attempts to answer the question of "how to achieve those gains in a practical decentralized wireless network and in the presence of a secrecy capacity cost for information exchange?". For this purpose, we model the physical layer security cooperation problem as a coalitional game with non-transferable utility and propose a distributed algorithm for coalition formation. Through the proposed algorithm, the wireless users can autonomously cooperate and self-organize into disjoint independent coalitions, while maximizing their secrecy capacity taking into account the security costs during information exchange. We analyze the resulting coalitional structures, discuss their properties, and study how the users can self-adapt the network topology to environmental changes such as mobility. Simulation results show that the proposed algorithm allows the users to cooperate and self-organize while improving the average secrecy capacity per user up to 25.32% relative to the non-cooperative case.Comment: Best paper Award at Wiopt 200

    Cooperative Game Theory and Its Application in Localization Algorithms

    Get PDF
    Complementary medicin

    Applications of Repeated Games in Wireless Networks: A Survey

    Full text link
    A repeated game is an effective tool to model interactions and conflicts for players aiming to achieve their objectives in a long-term basis. Contrary to static noncooperative games that model an interaction among players in only one period, in repeated games, interactions of players repeat for multiple periods; and thus the players become aware of other players' past behaviors and their future benefits, and will adapt their behavior accordingly. In wireless networks, conflicts among wireless nodes can lead to selfish behaviors, resulting in poor network performances and detrimental individual payoffs. In this paper, we survey the applications of repeated games in different wireless networks. The main goal is to demonstrate the use of repeated games to encourage wireless nodes to cooperate, thereby improving network performances and avoiding network disruption due to selfish behaviors. Furthermore, various problems in wireless networks and variations of repeated game models together with the corresponding solutions are discussed in this survey. Finally, we outline some open issues and future research directions.Comment: 32 pages, 15 figures, 5 tables, 168 reference

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    Enhancing secrecy rate in cognitive radio networks via stackelberg game

    Get PDF
    In this paper, a game theory based cooperation scheme is investigated to enhance the physical layer security in both primary and secondary transmissions of a cognitive radio network (CRN). In CRNs, the primary network may decide to lease its own spectrum for a fraction of time to the secondary nodes in exchange of appropriate remuneration. We consider the secondary transmitter node as a trusted relay for primary transmission to forward primary messages in a decode-and-forward (DF) fashion and, at the same time, allows part of its available power to be used to transmit artificial noise (i.e., jamming signal) to enhance primary and secondary secrecy rates. In order to allocate power between message and jamming signals, we formulate and solve the optimization problem for maximizing the secrecy rates under malicious attempts from EDs. We then analyse the cooperation between the primary and secondary nodes from a game-theoretic perspective where we model their interaction as a Stackelberg game with a theoretically proved and computed Stackelberg equilibrium. We show that the spectrum leasing based on trading secondary access for cooperation by means of relay and jammer is a promising framework for enhancing security in CRNs

    Enhancing secrecy rate in cognitive radio networks via stackelberg game

    Get PDF
    In this paper, a game theory based cooperation scheme is investigated to enhance the physical layer security in both primary and secondary transmissions of a cognitive radio network (CRN). In CRNs, the primary network may decide to lease its own spectrum for a fraction of time to the secondary nodes in exchange of appropriate remuneration. We consider the secondary transmitter node as a trusted relay for primary transmission to forward primary messages in a decode-and-forward (DF) fashion and, at the same time, allows part of its available power to be used to transmit artificial noise (i.e., jamming signal) to enhance primary and secondary secrecy rates. In order to allocate power between message and jamming signals, we formulate and solve the optimization problem for maximizing the secrecy rates under malicious attempts from EDs. We then analyse the cooperation between the primary and secondary nodes from a game-theoretic perspective where we model their interaction as a Stackelberg game with a theoretically proved and computed Stackelberg equilibrium. We show that the spectrum leasing based on trading secondary access for cooperation by means of relay and jammer is a promising framework for enhancing security in CRNs

    Secure multicast communications with private jammers

    Get PDF
    This paper investigates secrecy rate optimization for a multicasting network, in which a transmitter broadcasts the same information to multiple legitimate users in the presence of multiple eavesdroppers. In order to improve the achievable secrecy rates, private jammers are employed to generate interference to confuse the eavesdroppers. These private jammers charge the legitimate transmitter for their jamming services based on the amount of interference received at the eavesdroppers. Therefore, this secrecy rate maximization problem is formulated as a Stackelberg game, in which the private jammers and the transmitter are the leaders and the follower of the game, respectively. A fixed interference price scenario is considered first, in which a closed-form solution is derived for the optimal amount of interference generated by the jammers to maximize the revenue of the legitimate transmitter. Based on this solution, the Stackelberg equilibrium of the proposed game, at which both legitimate transmitter and the private jammers achieve their maximum revenues, is then derived. Simulation results are also provided to validate these theoretical derivations
    corecore