3,944 research outputs found

    Smart Microgrids: Overview and Outlook

    Full text link
    The idea of changing our energy system from a hierarchical design into a set of nearly independent microgrids becomes feasible with the availability of small renewable energy generators. The smart microgrid concept comes with several challenges in research and engineering targeting load balancing, pricing, consumer integration and home automation. In this paper we first provide an overview on these challenges and present approaches that target the problems identified. While there exist promising algorithms for the particular field, we see a missing integration which specifically targets smart microgrids. Therefore, we propose an architecture that integrates the presented approaches and defines interfaces between the identified components such as generators, storage, smart and \dq{dumb} devices.Comment: presented at the GI Informatik 2012, Braunschweig Germany, Smart Grid Worksho

    Hierarchical task allocation in robotic exploration

    Get PDF
    Autonomous robotic exploration has long been a topic of interest in robotics research. Robotic exploration promises the ability to explore otherwise unreachable or hostile environments. Autonomous exploration is particularly useful in distant or hostile environments in which real-time communication with a human controller may not be practical, such as deep sea or planetary exploration. In order to more effectively explore a large unknown area, multiple robots may be employed to work cooperatively. While cooperation among multiple robots allows for increased exploration potential, it also entails significantly more complex planning. This complex planning involves allocation of exploration tasks to the robots participating in the exploration. Task allocation for multi-agent systems has applications in a wide variety of fields, but specifically in robotics, it makes a level of autonomy possible that is difficult to achieve otherwise. Task allocation has been approached in a variety of ways, depending largely on the nature of the tasks considered. Some problems present very specific tasks, allowing task allocation algorithms for them to be very domain-specific. This thesis presents an analysis of various task allocation approaches that have been taken specifically for autonomous robotic exploration, and will present a new hierarchical market based approach. This new approach provides agents with a mechanism to form coalitions and to divide a coalition into smaller coalitions. The formation of new coalitions from larger coalitions to pursue multiple avenues of exploration forms an implicit hierarchy of goals as they are discovered
    • …
    corecore