13,052 research outputs found

    Coalition Power in Epistemic Transition Systems

    Get PDF
    The paper proposes a bimodal logic that describes an interplay between coalition strategies and distributed knowledge. Unlike the existing literature, the paper assumes that a strategy must be not only executable but also verifiable. That is, the strategy of a coalition should be based only on the information distributively known by the coalition and the coalition must be able to verify the result after the strategy is executed. The main technical result of the paper is a sound and complete logical system describing all universal properties expressible in the proposed bimodal language

    Reducing Validity in Epistemic ATL to Validity in Epistemic CTL

    Full text link
    We propose a validity preserving translation from a subset of epistemic Alternating-time Temporal Logic (ATL) to epistemic Computation Tree Logic (CTL). The considered subset of epistemic ATL is known to have the finite model property and decidable model-checking. This entails the decidability of validity but the implied algorithm is unfeasible. Reducing the validity problem to that in a corresponding system of CTL makes the techniques for automated deduction for that logic available for the handling of the apparently more complex system of ATL.Comment: In Proceedings SR 2013, arXiv:1303.007

    Situation awareness and ability in coalitions

    Get PDF
    This paper proposes a discussion on the formal links between the Situation Calculus and the semantics of interpreted systems as far as they relate to Higher-Level Information Fusion tasks. Among these tasks Situation Analysis require to be able to reason about the decision processes of coalitions. Indeed in higher levels of information fusion, one not only need to know that a certain proposition is true (or that it has a certain numerical measure attached), but rather needs to model the circumstances under which this validity holds as well as agents' properties and constraints. In a previous paper the authors have proposed to use the Interpreted System semantics as a potential candidate for the unification of all levels of information fusion. In the present work we show how the proposed framework allow to bind reasoning about courses of action and Situation Awareness. We propose in this paper a (1) model of coalition, (2) a model of ability in the situation calculus language and (3) a model of situation awareness in the interpreted systems semantics. Combining the advantages of both Situation Calculus and the Interpreted Systems semantics, we show how the Situation Calculus can be framed into the Interpreted Systems semantics. We illustrate on the example of RAP compilation in a coalition context, how ability and situation awareness interact and what benefit is gained. Finally, we conclude this study with a discussion on possible future works

    The Logic of Joint Ability in Two-Player Tacit Games

    Get PDF
    Logics of joint strategic ability have recently received attention, with arguably the most influential being those in a family that includes Coalition Logic (CL) and Alternating-time Temporal Logic (ATL). Notably, both CL and ATL bypass the epistemic issues that underpin Schelling-type coordination problems, by apparently relying on the meta-level assumption of (perfectly reliable) communication between cooperating rational agents. Yet such epistemic issues arise naturally in settings relevant to ATL and CL: these logics are standardly interpreted on structures where agents move simultaneously, opening the possibility that an agent cannot foresee the concurrent choices of other agents. In this paper we introduce a variant of CL we call Two-Player Strategic Coordination Logic (SCL2). The key novelty of this framework is an operator for capturing coalitional ability when the cooperating agents cannot share strategic information. We identify significant differences in the expressive power and validities of SCL2 and CL2, and present a sound and complete axiomatization for SCL2. We briefly address conceptual challenges when shifting attention to games with more than two players and stronger notions of rationality

    Blameworthiness in Strategic Games

    Full text link
    There are multiple notions of coalitional responsibility. The focus of this paper is on the blameworthiness defined through the principle of alternative possibilities: a coalition is blamable for a statement if the statement is true, but the coalition had a strategy to prevent it. The main technical result is a sound and complete bimodal logical system that describes properties of blameworthiness in one-shot games

    Knowledge and Blameworthiness

    Full text link
    Blameworthiness of an agent or a coalition of agents is often defined in terms of the principle of alternative possibilities: for the coalition to be responsible for an outcome, the outcome must take place and the coalition should have had a strategy to prevent it. In this article we argue that in the settings with imperfect information, not only should the coalition have had a strategy, but it also should have known that it had a strategy, and it should have known what the strategy was. The main technical result of the article is a sound and complete bimodal logic that describes the interplay between knowledge and blameworthiness in strategic games with imperfect information
    corecore