1,227 research outputs found

    A Game Theoretic Analysis of Incentives in Content Production and Sharing over Peer-to-Peer Networks

    Full text link
    User-generated content can be distributed at a low cost using peer-to-peer (P2P) networks, but the free-rider problem hinders the utilization of P2P networks. In order to achieve an efficient use of P2P networks, we investigate fundamental issues on incentives in content production and sharing using game theory. We build a basic model to analyze non-cooperative outcomes without an incentive scheme and then use different game formulations derived from the basic model to examine five incentive schemes: cooperative, payment, repeated interaction, intervention, and enforced full sharing. The results of this paper show that 1) cooperative peers share all produced content while non-cooperative peers do not share at all without an incentive scheme; 2) a cooperative scheme allows peers to consume more content than non-cooperative outcomes do; 3) a cooperative outcome can be achieved among non-cooperative peers by introducing an incentive scheme based on payment, repeated interaction, or intervention; and 4) enforced full sharing has ambiguous welfare effects on peers. In addition to describing the solutions of different formulations, we discuss enforcement and informational requirements to implement each solution, aiming to offer a guideline for protocol designers when designing incentive schemes for P2P networks.Comment: 31 pages, 3 figures, 1 tabl

    A Coalition Formation Game in Partition Form for Peer-to-Peer File Sharing Networks

    No full text
    In current peer-to-peer file sharing networks, a large number of peers with heterogeneous connections simultaneously seek to download resources, e.g., files or file fragments, from a common seed at the time these resources become available, which incurs high download delays on the different peers. Unlike existing literature which mainly focused on cooperative strategies for data exchange between different peers after all the peers have already acquired their resources, in this paper, we study the cooperation possibilities among a number of peers seeking to download, concurrently, a number of resources at the time the availability of the resources is initially announced at a common seed. We model the problem as a coalitional game in partition form and we propose an algorithm for coalition formation among the peers. The proposed algorithm enables the peers to take autonomous decisions to join or leave a coalition while minimizing their average download delay. We show that, by using the proposed algorithm, a Nash-stable partition composed of coalitions of peers is formed. Within every coalition, the peers distribute their download requests between the seed and the cooperating partners in a way to minimize the total average delay incurred on the coalition. Analytically, we study the 2-peer scenario and derive the optimal download request distribution policies. Simulation results show that, using the proposed coalition formation game, the peers can improve their average download delay per peer of up to 99.6% compared to the non-cooperative approach for the case with N = 15 peers

    Collusion in Peer-to-Peer Systems

    Get PDF
    Peer-to-peer systems have reached a widespread use, ranging from academic and industrial applications to home entertainment. The key advantage of this paradigm lies in its scalability and flexibility, consequences of the participants sharing their resources for the common welfare. Security in such systems is a desirable goal. For example, when mission-critical operations or bank transactions are involved, their effectiveness strongly depends on the perception that users have about the system dependability and trustworthiness. A major threat to the security of these systems is the phenomenon of collusion. Peers can be selfish colluders, when they try to fool the system to gain unfair advantages over other peers, or malicious, when their purpose is to subvert the system or disturb other users. The problem, however, has received so far only a marginal attention by the research community. While several solutions exist to counter attacks in peer-to-peer systems, very few of them are meant to directly counter colluders and their attacks. Reputation, micro-payments, and concepts of game theory are currently used as the main means to obtain fairness in the usage of the resources. Our goal is to provide an overview of the topic by examining the key issues involved. We measure the relevance of the problem in the current literature and the effectiveness of existing philosophies against it, to suggest fruitful directions in the further development of the field

    Energy aware and privacy preserving protocols for ad hoc networks with applications to disaster management

    Get PDF
    Disasters can have a serious impact on the functioning of communities and societies. Disaster management aims at providing efficient utilization of resources during pre-disaster (e.g. preparedness and prevention) and post-disaster (e.g. recovery and relief) scenarios to reduce the impact of disasters. Wireless sensors have been extensively used for early detection and prevention of disasters. However, the sensor\u27s operating environment may not always be congenial to these applications. Attackers can observe the traffic flow in the network to determine the location of the sensors and exploit it. For example, in intrusion detection systems, the information can be used to identify coverage gaps and avoid detection. Data source location privacy preservation protocols were designed in this work to address this problem. Using wireless sensors for disaster preparedness, recovery and relief operations can have high deployment costs. Making use of wireless devices (e.g. smartphones and tablets) widely available among people in the affected region is a more practical approach. Disaster preparedness involves dissemination of information among the people to make them aware of the risks they will face in the event of a disaster and how to actively prepare for them. The content is downloaded by the people on their smartphones and tablets for ubiquitous access. As these devices are primarily constrained by their available energy, this work introduces an energy-aware peer-to-peer file sharing protocol for efficient distribution of the content and maximizing the lifetime of the devices. Finally, the ability of the wireless devices to build an ad hoc network for capturing and collecting data for disaster relief and recovery operations was investigated. Specifically, novel energy-adaptive mechanisms were designed for autonomous creation of the ad hoc network, distribution of data capturing task among the devices, and collection of data with minimum delay --Abstract, page iii

    Large-Scale Distributed Coalition Formation

    Get PDF
    The CyberCraft project is an effort to construct a large scale Distributed Multi-Agent System (DMAS) to provide autonomous Cyberspace defense and mission assurance for the DoD. It employs a small but flexible agent structure that is dynamically reconfigurable to accommodate new tasks and policies. This document describes research into developing protocols and algorithms to ensure continued mission execution in a system of one million or more agents, focusing on protocols for coalition formation and Command and Control. It begins by building large-scale routing algorithms for a Hierarchical Peer to Peer structured overlay network, called Resource-Clustered Chord (RC-Chord). RC-Chord introduces the ability to efficiently locate agents by resources that agents possess. Combined with a task model defined for CyberCraft, this technology feeds into an algorithm that constructs task coalitions in a large-scale DMAS. Experiments reveal the flexibility and effectiveness of these concepts for achieving maximum work throughput in a simulated CyberCraft environment

    On the Formation of Peer-to-Peer Networks: Self-Organized Sharing and Groups

    Get PDF
    In this paper, we investigate the formation of peer-to-peer (P2P) networks with rational participating agents (active peers). In the absence of a central planner, peers choose their own utility-maximizing strategies for coalition and peer formation. P2P networks evolve dynamically through the activities of interactions among individual nodes and group units. We propose a framework for multilevel formation dynamics, including an individual level (content sharing decision and group selection) and a group level (membership admission). The respective utilities of the individual node and the collective player are formulated as functions of operational performance metrics such as expected content availability, search delay, transmission delay, and download delay. We study the impacts of various system parameters on the emergence of self-organized P2P network configuration features such as free-riding level and group size. Furthermore, we investigate the stability and efficiency of P2P networks and propose internal transfer mechanisms that force stable networks to become efficient

    Structured P2P Technologies for Distributed Command and Control

    Get PDF
    The utility of Peer-to-Peer (P2P) systems extends far beyond traditional file sharing. This paper provides an overview of how P2P systems are capable of providing robust command and control for Distributed Multi-Agent Systems (DMASs). Specifically, this article presents the evolution of P2P architectures to date by discussing supporting technologies and applicability of each generation of P2P systems. It provides a detailed survey of fundamental design approaches found in modern large-scale P2P systems highlighting design considerations for building and deploying scalable P2P applications. The survey includes unstructured P2P systems, content retrieval systems, communications structured P2P systems, flat structured P2P systems and finally Hierarchical Peer-to-Peer (HP2P) overlays. It concludes with a presentation of design tradeoffs and opportunities for future research into P2P overlay systems

    Peer-to-Peer File Sharing WebApp: Enhancing Data Security and Privacy through Peer-to-Peer File Transfer in a Web Application

    Get PDF
    Peer-to-peer (P2P) networking has emerged as a promising technology that enables distributed systems to operate in a decentralized manner. P2P networks are based on a model where each node in the network can act as both a client and a server, thereby enabling data and resource sharing without relying on centralized servers. The P2P model has gained considerable attention in recent years due to its potential to provide a scalable, fault-tolerant, and resilient architecture for various applications such as file sharing, content distribution, and social networks.In recent years, researchers have also proposed hybrid architectures that combine the benefits of both structured and unstructured P2P networks. For example, the Distributed Hash Table (DHT) is a popular hybrid architecture that provides efficient lookup and search algorithms while maintaining the flexibility and adaptability of the unstructured network.To demonstrate the feasibility of P2P systems, several prototypes have been developed, such as the BitTorrent file-sharing protocol and the Skype voice-over-IP (VoIP) service. These prototypes have demonstrated the potential of P2P systems for large-scale applications and have paved the way for the development of new P2P-based systems

    A Self-Tuning procedure for resource management in InterCloud Computing

    Get PDF
    Beijing Key Laboratory on Integration and Analysis of Large-scale Stream Data, College of Computer Science, North China University of Technology, Beijing, China The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.InterCloud Computing is a new cloud paradigm designed to guarantee service quality or performance and availability of on-demand resources. InterCloud enables cloud interoperability by promoting the interworking of cloud systems from different cloud providers using standard interfacing. Resource management in InterCloud, considered as an important functional requirement, has not attracted commensurate research attention. The focus of this paper is to propose a Software Cybernetic approach, in the form of an adaptive control framework, for efficient management of shared resources in peer-to-peer InterCloud computing. This research effort adopts cooperative game theory to model resource management in InterCloud. The space of cooperative arrangements (resource sharing) between the participant cloud systems is presented by using Integer Partitioning to characterise the worst case communication complexity in peer to peer InterCloud. Essentially, this paper presents an Integer partition based anytime algorithm as an optimal cost solution to the bi-objective optimisation problem in resource management, anchored principally on practical trade-off between the desired performance (quality of service) and communication complexity of collaborating resource clouds
    • …
    corecore