98 research outputs found

    Probabilistic Bisimulation: Naturally on Distributions

    Full text link
    In contrast to the usual understanding of probabilistic systems as stochastic processes, recently these systems have also been regarded as transformers of probabilities. In this paper, we give a natural definition of strong bisimulation for probabilistic systems corresponding to this view that treats probability distributions as first-class citizens. Our definition applies in the same way to discrete systems as well as to systems with uncountable state and action spaces. Several examples demonstrate that our definition refines the understanding of behavioural equivalences of probabilistic systems. In particular, it solves a long-standing open problem concerning the representation of memoryless continuous time by memory-full continuous time. Finally, we give algorithms for computing this bisimulation not only for finite but also for classes of uncountably infinite systems

    A domain-theoretic investigation of posets of sub-sigma-algebras (extended abstract)

    Full text link
    Given a measurable space (X, M) there is a (Galois) connection between sub-sigma-algebras of M and equivalence relations on X. On the other hand equivalence relations on X are closely related to congruences on stochastic relations. In recent work, Doberkat has examined lattice properties of posets of congruences on a stochastic relation and motivated a domain-theoretic investigation of these ordered sets. Here we show that the posets of sub-sigma-algebras of a measurable space do not enjoy desired domain-theoretic properties and that our counterexamples can be applied to the set of smooth equivalence relations on an analytic space, thus giving a rather unsatisfactory answer to Doberkat's question

    Distribution-based bisimulation for labelled Markov processes

    Full text link
    In this paper we propose a (sub)distribution-based bisimulation for labelled Markov processes and compare it with earlier definitions of state and event bisimulation, which both only compare states. In contrast to those state-based bisimulations, our distribution bisimulation is weaker, but corresponds more closely to linear properties. We construct a logic and a metric to describe our distribution bisimulation and discuss linearity, continuity and compositional properties.Comment: Accepted by FORMATS 201

    A Note on the Coalgebraic Interpretation of Game Logic

    Get PDF
    We propose a coalgebraic interpretation of game logic, making the results of coalgebraic logic available for this context. We study some properties of a coalgebraic interpretation, showing among others that Aczel's Theorem on the characterization of bisimilar models through spans of morphisms is valid here. We investigate also congruences as those equivalences on the state space which preserve the structure of the model

    Coalgebras on Measurable Spaces

    Get PDF
    Thesis (PhD) - Indiana University, Mathematics, 2005Given an endofunctor T in a category C, a coalgebra is a pair (X,c) consisting of an object X and a morphism c:X ->T(X). X is called the carrier and the morphism c is called the structure map of the T-coalgebra. The theory of coalgebras has been found to abstract common features of different areas like computer program semantics, modal logic, automata, non-well-founded sets, etc. Most of the work on concrete examples, however, has been limited to the category Set. The work developed in this dissertation is concerned with the category Meas of measurable spaces and measurable functions. Coalgebras of measurable spaces are of interest as a formalization of Markov Chains and can also be used to model probabilistic reasoning. We discuss some general facts related to the most interesting functor in Meas, Delta, that assigns to each measurable space, the space of all probability measures on it. We show that this functor does not preserve weak pullbacks or omega op-limits, conditions assumed in many theorems about coalgebras. The main result will be two constructions of final coalgebras for many interesting functors in Meas. The first construction (joint work with L. Moss), is based on a modal language that lets us build formulas that describe the elements of the final coalgebra. The second method makes use of a subset of the projective limit of the final sequence for the functor in question. That is, the sequence 1 <- T1 <- T 2 1 <-... obtained by iteratively applying the functor to the terminal element 1 of the category. Since these methods seem to be new, we also show how to use them in the category Set, where they provide some insight on how the structure map of the final coalgebra works. We show as an application how to construct universal Type Spaces, an object of interest in Game Theory and Economics. We also compare our method with previously existing constructions

    Generalized labelled Markov processes, coalgebraically

    Get PDF
    Coalgebras of measurable spaces are of interest in probability theory as a formalization of Labelled Markov Processes (LMPs). We discuss some general facts related to the notions of bisimulation and cocongruence on these systems, providing a faithful characterization of bisimulation on LMPs on generic measurable spaces. This has been used to prove that bisimilarity on single LMPs is an equivalence, without assuming the state space to be analytic. As the second main contribution, we introduce the first specification rule format to define well-behaved composition operators for LMPs. This allows one to define process description languages on LMPs which are always guaranteed to have a fully-abstract semantics
    • …
    corecore