62 research outputs found

    Permutation Games for the Weakly Aconjunctive μ\mu-Calculus

    Full text link
    We introduce a natural notion of limit-deterministic parity automata and present a method that uses such automata to construct satisfiability games for the weakly aconjunctive fragment of the μ\mu-calculus. To this end we devise a method that determinizes limit-deterministic parity automata of size nn with kk priorities through limit-deterministic B\"uchi automata to deterministic parity automata of size O((nk)!)\mathcal{O}((nk)!) and with O(nk)\mathcal{O}(nk) priorities. The construction relies on limit-determinism to avoid the full complexity of the Safra/Piterman-construction by using partial permutations of states in place of Safra-Trees. By showing that limit-deterministic parity automata can be used to recognize unsuccessful branches in pre-tableaux for the weakly aconjunctive μ\mu-calculus, we obtain satisfiability games of size O((nk)!)\mathcal{O}((nk)!) with O(nk)\mathcal{O}(nk) priorities for weakly aconjunctive input formulas of size nn and alternation-depth kk. A prototypical implementation that employs a tableau-based global caching algorithm to solve these games on-the-fly shows promising initial results

    Coalgebraic Trace Semantics for Buechi and Parity Automata

    Get PDF
    Despite its success in producing numerous general results on state-based dynamics, the theory of coalgebra has struggled to accommodate the Buechi acceptance condition---a basic notion in the theory of automata for infinite words or trees. In this paper we present a clean answer to the question that builds on the "maximality" characterization of infinite traces (by Jacobs and Cirstea): the accepted language of a Buechi automaton is characterized by two commuting diagrams, one for a least homomorphism and the other for a greatest, much like in a system of (least and greatest) fixed-point equations. This characterization works uniformly for the nondeterministic branching and the probabilistic one; and for words and trees alike. We present our results in terms of the parity acceptance condition that generalizes Buechi\u27s

    Powerset-Like Monads Weakly Distribute over Themselves in Toposes and Compact Hausdorff Spaces

    Get PDF
    The powerset monad on the category of sets does not distribute over itself. Nevertheless a weaker form of distributive law of the powerset monad over itself exists and it essentially stems from the canonical Egli-Milner extension of the powerset to the category of relations. On the other hand, any regular category yields a category of relations, and some regular categories also possess a powerset-like monad, as is the Vietoris monad on compact Hausdorff spaces. We derive the Egli-Milner extension in three different frameworks : sets, toposes, and compact Hausdorff spaces. We prove that it corresponds to a monotone weak distributive law in each case by showing that the multiplication extends to relations but the unit does not. We provide an application to coalgebraic determinization of alternating automata

    Fair Simulation for Nondeterministic and Probabilistic Buechi Automata: a Coalgebraic Perspective

    Full text link
    Notions of simulation, among other uses, provide a computationally tractable and sound (but not necessarily complete) proof method for language inclusion. They have been comprehensively studied by Lynch and Vaandrager for nondeterministic and timed systems; for B\"{u}chi automata the notion of fair simulation has been introduced by Henzinger, Kupferman and Rajamani. We contribute to a generalization of fair simulation in two different directions: one for nondeterministic tree automata previously studied by Bomhard; and the other for probabilistic word automata with finite state spaces, both under the B\"{u}chi acceptance condition. The former nondeterministic definition is formulated in terms of systems of fixed-point equations, hence is readily translated to parity games and is then amenable to Jurdzi\'{n}ski's algorithm; the latter probabilistic definition bears a strong ranking-function flavor. These two different-looking definitions are derived from one source, namely our coalgebraic modeling of B\"{u}chi automata. Based on these coalgebraic observations, we also prove their soundness: a simulation indeed witnesses language inclusion
    • …
    corecore