310 research outputs found

    The coalescing-branching random walk on expanders and the dual epidemic process

    Get PDF
    Information propagation on graphs is a fundamental topic in distributed computing. One of the simplest models of information propagation is the push protocol in which at each round each agent independently pushes the current knowledge to a random neighbour. In this paper we study the so-called coalescing-branching random walk (COBRA), in which each vertex pushes the information to kk randomly selected neighbours and then stops passing information until it receives the information again. The aim of COBRA is to propagate information fast but with a limited number of transmissions per vertex per step. In this paper we study the cover time of the COBRA process defined as the minimum time until each vertex has received the information at least once. Our main result says that if GG is an nn-vertex rr-regular graph whose transition matrix has second eigenvalue λ\lambda, then the COBRA cover time of GG is O(logn)\mathcal O(\log n ), if 1λ1-\lambda is greater than a positive constant, and O((logn)/(1λ)3))\mathcal O((\log n)/(1-\lambda)^3)), if 1λlog(n)/n1-\lambda \gg \sqrt{\log( n)/n}. These bounds are independent of rr and hold for 3rn13 \le r \le n-1. They improve the previous bound of O(log2n)O(\log^2 n) for expander graphs. Our main tool in analysing the COBRA process is a novel duality relation between this process and a discrete epidemic process, which we call a biased infection with persistent source (BIPS). A fixed vertex vv is the source of an infection and remains permanently infected. At each step each vertex uu other than vv selects kk neighbours, independently and uniformly, and uu is infected in this step if and only if at least one of the selected neighbours has been infected in the previous step. We show the duality between COBRA and BIPS which says that the time to infect the whole graph in the BIPS process is of the same order as the cover time of the COBRA proces

    Contact and voter processes on the infinite percolation cluster as models of host-symbiont interactions

    Full text link
    We introduce spatially explicit stochastic processes to model multispecies host-symbiont interactions. The host environment is static, modeled by the infinite percolation cluster of site percolation. Symbionts evolve on the infinite cluster through contact or voter type interactions, where each host may be infected by a colony of symbionts. In the presence of a single symbiont species, the condition for invasion as a function of the density of the habitat of hosts and the maximal size of the colonies is investigated in details. In the presence of multiple symbiont species, it is proved that the community of symbionts clusters in two dimensions whereas symbiont species may coexist in higher dimensions.Comment: Published in at http://dx.doi.org/10.1214/10-AAP734 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore