33,075 research outputs found

    Flare Forecasting Using the Evolution of McIntosh Sunspot Classifications

    Full text link
    Most solar flares originate in sunspot groups, where magnetic field changes lead to energy build-up and release. However, few flare-forecasting methods use information of sunspot-group evolution, instead focusing on static point-in-time observations. Here, a new forecast method is presented based upon the 24-hr evolution in McIntosh classification of sunspot groups. Evolution-dependent \geqslantC1.0 and \geqslantM1.0 flaring rates are found from NOAA-numbered sunspot groups over December 1988 to June 1996 (Solar Cycle 22; SC22) before converting to probabilities assuming Poisson statistics. These flaring probabilities are used to generate operational forecasts for sunspot groups over July 1996 to December 2008 (SC23), with performance studied by verification metrics. Major findings are: i) considering Brier skill score (BSS) for \geqslantC1.0 flares, the evolution-dependent McIntosh-Poisson method (BSSevolution=0.09\text{BSS}_{\text{evolution}}=0.09) performs better than the static McIntosh-Poisson method (BSSstatic=0.09\text{BSS}_{\text{static}} = -0.09); ii) low BSS values arise partly from both methods over-forecasting SC23 flares from the SC22 rates, symptomatic of \geqslantC1.0 rates in SC23 being on average \approx80% of those in SC22 (with \geqslantM1.0 being \approx50%); iii) applying a bias-correction factor to reduce the SC22 rates used in forecasting SC23 flares yields modest improvement in skill relative to climatology for both methods (BSSstaticcorr=0.09\mathrm{BSS}^{\mathrm{corr}}_{\mathrm{static}} = 0.09 and BSSevolutioncorr=0.20\mathrm{BSS}^{\mathrm{corr}}_{\mathrm{evolution}} = 0.20) and improved forecast reliability diagrams.Comment: 21 pages, 9 figure

    Generative deep fields : arbitrarily sized, random synthetic astronomical images through deep learning

    Get PDF
    © 2019 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society.Generative Adversarial Networks (GANs) are a class of artificial neural network that can produce realistic, but artificial, images that resemble those in a training set. In typical GAN architectures these images are small, but a variant known as Spatial-GANs (SGANs) can generate arbitrarily large images, provided training images exhibit some level of periodicity. Deep extragalactic imaging surveys meet this criteria due to the cosmological tenet of isotropy. Here we train an SGAN to generate images resembling the iconic Hubble Space Telescope eXtreme Deep Field (XDF). We show that the properties of 'galaxies' in generated images have a high level of fidelity with galaxies in the real XDF in terms of abundance, morphology, magnitude distributions and colours. As a demonstration we have generated a 7.6-billion pixel 'generative deep field' spanning 1.45 degrees. The technique can be generalised to any appropriate imaging training set, offering a new purely data-driven approach for producing realistic mock surveys and synthetic data at scale, in astrophysics and beyond.Peer reviewe

    Digital image correlation (DIC) analysis of the 3 December 2013 Montescaglioso landslide (Basilicata, Southern Italy). Results from a multi-dataset investigation

    Get PDF
    Image correlation remote sensing monitoring techniques are becoming key tools for providing effective qualitative and quantitative information suitable for natural hazard assessments, specifically for landslide investigation and monitoring. In recent years, these techniques have been successfully integrated and shown to be complementary and competitive with more standard remote sensing techniques, such as satellite or terrestrial Synthetic Aperture Radar interferometry. The objective of this article is to apply the proposed in-depth calibration and validation analysis, referred to as the Digital Image Correlation technique, to measure landslide displacement. The availability of a multi-dataset for the 3 December 2013 Montescaglioso landslide, characterized by different types of imagery, such as LANDSAT 8 OLI (Operational Land Imager) and TIRS (Thermal Infrared Sensor), high-resolution airborne optical orthophotos, Digital Terrain Models and COSMO-SkyMed Synthetic Aperture Radar, allows for the retrieval of the actual landslide displacement field at values ranging from a few meters (2–3 m in the north-eastern sector of the landslide) to 20–21 m (local peaks on the central body of the landslide). Furthermore, comprehensive sensitivity analyses and statistics-based processing approaches are used to identify the role of the background noise that affects the whole dataset. This noise has a directly proportional relationship to the different geometric and temporal resolutions of the processed imagery. Moreover, the accuracy of the environmental-instrumental background noise evaluation allowed the actual displacement measurements to be correctly calibrated and validated, thereby leading to a better definition of the threshold values of the maximum Digital Image Correlation sub-pixel accuracy and reliability (ranging from 1/10 to 8/10 pixel) for each processed dataset

    Observations of the Sunyaev-Zel'dovich effect at high angular resolution towards the galaxy clusters A665, A2163 and CL0016+16

    Get PDF
    We report on the first observation of the Sunyaev-Zel'dovich effect with the Diabolo experiment at the IRAM 30 metre telescope. A significant brightness decrement is detected in the direction of three clusters (Abell 665, Abell 2163 and CL0016+16). With a 30 arcsecond beam and 3 arcminute beamthrow, this is the highest angular resolution observation to date of the SZ effect.Comment: 23 pages, 8 figures, 6 tables, accepted to New Astronom

    Economic Integration in East Asia: Trends, Prospects, and a Possible Roadmap

    Get PDF
    This paper, which is a revised version of the ADB Working Paper on Regional Economic Integration No. 2, reviews trends in East Asian regionalism in the areas of trade and investment, money and finance, and infrastructure. It finds that trade and, to a lesser extent, financial integration is starting to increase in the region. It also finds that business cycles are starting to be more synchronized, enhancing the case for further monetary integration among these countries. The paper also outlines a roadmap for East Asian integration.

    Economic Integration in East Asia: Trends, Prospects, and a Possible Roadmap

    Get PDF
    This paper reviews trends in East Asian regionalism in the areas of trade and investment, money and finance, and infrastructure. It presents various measures of trade and financial integration. An important finding of the paper is that increasing trade and financial integration in the region is now starting to lead to a synchronization of business cycles in a selected group of countries, further enhancing the case for monetary integration among these countries. The paper also outlines a roadmap for East Asian integration.ASEAN/East Asian economic cooperation and integration; business cycle synchronization; free trade agreements; policy coordination
    corecore