10 research outputs found

    Coordinated Beamforming with Altruistic Precoding and User Selection for MU-MIMO System

    Get PDF
    Other cell interference (OCI) degrades the achievable capacity of downlink multiuser multiple-input multiple-output (MU-MIMO) systems seriously. Among OCI mitigation schemes, methods that sacrifice ξ degrees of freedom to nullify the OCI have been proven to be helpful to improve the cell edge throughput. However, since interference nulling schemes can only improve the signal to interference plus noise ratio (SINR) of ξ users, they are not optimal in terms of average cell throughput, especially for low to medium OCI levels. We explore the question whether it is better to improve the SINR of every user in other cells rather than benefit ξ users. An altruistic precoding method to minimize the sum of generated interference for all of the other cell users is proposed with ξ degrees of freedom being sacrificed. With the altruistic precoding method, we deduce the lower bound on the capacity and solve the multicell user selection problem with a local optimal solution in which only eigenvalues of interfering channels are needed to be shared. Simulation results demonstrate that the proposed method outperforms the existing algorithms at any OCI level. Furthermore, we also analyze the best choice of degrees of freedom used to mitigate OCI through simulation

    Multiple Access Techniques for Next Generation Wireless: Recent Advances and Future Perspectives

    Get PDF
    The advances in multiple access techniques has been one of the key drivers in moving from one cellular generation to another. Starting from the first generation, several multiple access techniques have been explored in different generations and various emerging multiplexing/multiple access techniques are being investigated for the next generation of cellular networks. In this context, this paper first provides a detailed review on the existing Space Division Multiple Access (SDMA) related works. Subsequently, it highlights the main features and the drawbacks of various existing and emerging multiplexing/multiple access techniques. Finally, we propose a novel concept of clustered orthogonal signature division multiple access for the next generation of cellular networks. The proposed concept envisions to employ joint antenna coding in order to enhance the orthogonality of SDMA beams with the objective of enhancing the spectral efficiency of future cellular networks

    Analysis of hybrid schedulers for CoMP resource allocation in LTE-Advanced SU-MIMO systems

    Get PDF
    Coordinated Multi Point transmission and reception (CoMP) has been considered as a promising technique to enhance system throughput performance by reducing inter-cell interference (ICI) in cell edge area. Past studies showed that Joint Processing (JP) transmission mode is capable to provide much better throughput performance benefits than Coordinated Scheduling/Beamforming (CS/CB) both in homogeneous and heterogeneous networks; however, the robust strategy of resource block (RB) allocation and scheduling algorithms has to be specifically designed for CoMP-JP in a MIMO-OFDMA system. In this paper, an intuitive algorithm will be investigated in order to reach the highest overall system throughput but keep same level of fairness performance at same time. We first analyze the threshold of reference signal strength to determine the operating region for CoMP-JP user selection, and then calculate the robust ratio of RB allocation for CoMP and non-CoMP users. In final stage, the hybrid schedulers adopted specifically for the unique characteristics of CoMP and non-CoMP users will be analyzed and compared. Our results show that the threshold of reference signal strength (λ,θ)(\lambda, \theta) should both be set at -1dB for CoMP operating region, and the parameter to the ratio of CoMP users should be set at γ=0.9\gamma = 0.9 for robust RB allocation

    Multiple Access Techniques for Next Generation Wireless: Recent Advances and Future Perspectives

    Get PDF
    The advances in multiple access techniques has been one of the key drivers in moving from one cellular generation to another. Starting from the first generation, several multiple access techniques have been explored in different generations and various emerging multiplexing/multiple access techniques are being investigated for the next generation of cellular networks. In this context, this paper first provides a detailed review on the existing Space Division Multiple Access (SDMA) related works. Subsequently, it highlights the main features and the drawbacks of various existing and emerging multiplexing/multiple access techniques. Finally, we propose a novel concept of clustered orthogonal signature division multiple access for the next generation of cellular networks. The proposed concept envisions to employ joint antenna coding in order to enhance the orthogonality of SDMA beams with the objective of enhancing the spectral efficiency of future cellular networks

    Interference Coordination in Multiple Antenna Based LTE-Advanced Heterogeneous Systems

    Get PDF
    With picocells deployed in the coverage of a macrocell in heterogeneous networks (HetNets), the macrocell evolved NodeB (MeNB) may receive interference signals from the picocell users, which results in more severe co-channel interference (CCI) problem in the uplink. In this paper, the spatial uplink interference coordination is investigated in multiple antenna systems, according to which the receiver coding matrix is generated by MeNB to mitigate the CCI from picocell users. Two interference coordination (IC) schemes are proposed based on whether the receiver coding matrix is full rank or not, named as full coding (IC-FC) and part coding (IC-PC), respectively. The application of the proposed schemes is discussed in single picocell and multiple picocell scenarios. The CCI can be totally canceled in single picocell scenario, and an algorithm is developed in multiple picocell networks to mitigate the most severely interfering picocell. Link level and system level simulations are applied, and it is shown that significant performance gain is achieved by our proposed schemes over traditional IC receivers

    Resource Allocation for Coordinated Multipoint Joint Transmission System and Received Signal Strength Based Positioning in Long Term Evolution Network

    Get PDF
    The Long-Term Evolution Advanced (LTE-A) system are expected to provide high speed and high quality services, which are supported by emerging technologies such as Coordinated Multipoint (CoMP) transmission and reception. Dynamic resource allocation plays a vital role in LTE-A design and planning, which is investigated in this thesis. In addition, Received Signal Strength (RSS) based positioning is also investigated in orthogonal frequency division multiplexing (OFDM) based wireless networks, which is based on an industry project. In the first contribution, a physical resource blocks (PRB) allocation scheme with fuzzy logic based user selection is proposed. This work considers three parameters and exploit a fuzzy logic (FL) based criterion to categorize users. As a result, it enhances accuracy of user classification. This work improves system capacity by a ranking based PRBs allocation schemes. Simulation results show that proposed fuzzy logic based user selection scheme improves performance for CoMP users. Proposed ranking based greedy allocation algorithm cut complexity in half but maintain same performance. In the second contribution, a two-layer proportional-fair (PF) user scheduling scheme is proposed. This work focused on fairness between CoMP and Non-CoMP users instead of balancing fairness in each user categories. Proposed scheme jointly optimizes fairness and system capacity over both CoMP and Non-CoMP users. Simulation results show that proposed algorithm significantly improves fairness between CoMP and Non-CoMP users. In the last contribution, RSS measurement method in LTE system is analyzed and a realizable RSS measurement method is proposed to fight against multipath effect. Simulation results shows that proposed method significantly reduced measurement error caused by multipath. In RSS based positioning area, this is the first work that consider exploiting LTE’s own signal strength measurement mechanism to enhance accuracy of positioning. Furthermore, the proposed method can be deployed in modern LTE system with limited cost
    corecore