413 research outputs found

    Interoperability in IoT through the semantic profiling of objects

    Get PDF
    The emergence of smarter and broader people-oriented IoT applications and services requires interoperability at both data and knowledge levels. However, although some semantic IoT architectures have been proposed, achieving a high degree of interoperability requires dealing with a sea of non-integrated data, scattered across vertical silos. Also, these architectures do not fit into the machine-to-machine requirements, as data annotation has no knowledge on object interactions behind arriving data. This paper presents a vision of how to overcome these issues. More specifically, the semantic profiling of objects, through CoRE related standards, is envisaged as the key for data integration, allowing more powerful data annotation, validation, and reasoning. These are the key blocks for the development of intelligent applications.Portuguese Science and Technology Foundation (FCT) [UID/MULTI/00631/2013

    Raamistik mobiilsete asjade veebile

    Get PDF
    Internet on oma arengus läbi aastate jõudnud järgmisse evolutsioonietappi - asjade internetti (ingl Internet of Things, lüh IoT). IoT ei tähista ühtainsat tehnoloogiat, see võimaldab eri seadmeil - arvutid, mobiiltelefonid, autod, kodumasinad, loomad, virtuaalsensorid, jne - omavahel üle Interneti suhelda, vajamata seejuures pidevat inimesepoolset seadistamist ja juhtimist. Mobiilseadmetest nagu näiteks nutitelefon ja tahvelarvuti on saanud meie igapäevased kaaslased ning oma mitmekülgse võimekusega on nad motiveerinud teadustegevust mobiilse IoT vallas. Nutitelefonid kätkevad endas võimekaid protsessoreid ja 3G/4G tehnoloogiatel põhinevaid internetiühendusi. Kuid kui kasutada seadmeid järjepanu täisvõimekusel, tühjeneb mobiili aku kiirelt. Doktoritöö esitleb energiasäästlikku, kergekaalulist mobiilsete veebiteenuste raamistikku anduriandmete kogumiseks, kasutades kergemaid, energiasäästlikumaid suhtlustprotokolle, mis on IoT keskkonnale sobilikumad. Doktoritöö käsitleb põhjalikult energia kokkuhoidu mobiilteenuste majutamisel. Töö käigus loodud raamistikud on kontseptsiooni tõestamiseks katsetatud mitmetes juhtumiuuringutes päris seadmetega.The Internet has evolved, over the years, from just being the Internet to become the Internet of Things (IoT), the next step in its evolution. IoT is not a single technology and it enables about everything from computers, mobile phones, cars, appliances, animals, virtual sensors, etc. that connect and interact with each other over the Internet to function free from human interaction. Mobile devices like the Smartphone and tablet PC have now become essential to everyday life and with extended capabilities have motivated research related to the mobile Internet of Things. Although, the recently developed Smartphones enjoy the high performance and high speed 3G/4G mobile Internet data transmission services, such high speed performances quickly drain the battery power of the mobile device. This thesis presents an energy efficient lightweight mobile Web service provisioning framework for mobile sensing utilizing the protocols that were designed for the constrained IoT environment. Lightweight protocols provide an energy efficient way of communication. Finally, this thesis highlights the energy conservation of the mobile Web service provisioning, the developed framework, extensively. Several case studies with the use of the proposed framework were implemented on real devices and has been thoroughly tested as a proof-of-concept.https://www.ester.ee/record=b522498

    Distributed architecture for resource description and discovery in the IoT

    Full text link
    Nowadays, the Internet of Things (IoT) creates a vast ecosystem of intelligent objects interconnected via the Internet, allowing them to exchange information and to interact. This paradigm has been extended to a new concept, called the Web of Things (WoT), considering that every physical object can be accessed and controlled using Web-based languages and protocols, such as: the CoAP protocol which is becoming the most accepted and suitable protocol in this context. Moreover, the architectures currently proposed for the creation of IoT environments lack efficient and standard support for the discovery, selection and composition of IoT services and their integration in a scalable and interoperable way. To overcome this, in this work, we propose a hybrid and distributed CoAP-based architecture, considering all these aspects by combining the Fog Computing paradigm and structured P2P overlay networks. Furthermore, we describe the different components of our architecture and explain the interaction between them

    Service Composition for IP Smart Object using Realtime Web Protocols: Concept and Research Challenges

    Get PDF
    The Internet of Things (IoT) refers to a world-wide network of interconnected physical things using standardized communication protocols. Recent development of Internet Protocol (IP) stacks for resource-constrained devices unveils a possibility for the future IoT based on the stable and scalable IP technology much like today's Internet of computers. One important question remains: how can data and events (denoted as services) introduced by a variety of IP networked things be exchanged and aggregated e ciently in various application domains. Because the true value of IoT lies in the interaction of several services from physical things, answers to this question are essential to support a rapid creation of new IoT smart and ubiquitous applications. The problem is known as service composition. This article explains the practicability of the future full-IP IoT with realtime Web protocols to formally state the problem of service composition for IP smart objects, provides literature review, and discusses its research challenges

    D-LITe : Distributed Logic for Internet of Things sErvices

    Get PDF
    International audienceSmartphones, PDA, Sensors, Actuators, Phidgets and Smart Objects (i.e. objects with processing and networking capabilities) are more and more present in everyday's life. Merging all these technologies with the Internet is often described as 'Internet of Things' (IoT). In the IoT vision, Things around us provide a pervasive network of interacting and interconnected devices. However building IoT applications is a long and arduous work, reserved for specialists, requiring specific knowledges in terms of network protocols and programming languages. The lack of widespread and easy-to-configure solutions is an obstacle for the development of this area. A universal framework, offering simplification and standardization, could facilitate the emergence of this promising field in terms of applications and business. IoT needs a solid foundation for rapid, simple development and deployment of new services. In this paper, we present DLITe, a universal framework for building IoT applications over heterogeneous sets of small devices. D-LITe offers solutions for deploying application's logic, and executing it on Smart Objects despite their heterogeneity. An implementation of DLITe on tiny devices, such as TelosB motes, allows to show that our framework is realistic even with the constraints of such devices

    Liberalising Deployment of Internet of Things Devices and Services in Large Scale Environments

    Get PDF

    C Minor: a Semantic Publish/Subscribe Broker for the Internet of Musical Things

    Get PDF
    Semantic Web technologies are increasingly used in the Internet of Things due to their intrinsic propensity to foster interoperability among heterogenous devices and services. However, some of the IoT application domains have strict requirements in terms of timeliness of the exchanged messages, latency and support for constrained devices. An example of these domains is represented by the emerging area of the Internet of MusicalThings.InthispaperweproposeCMinor,aCoAP-based semantic publish/subscribe broker speci\ufb01cally designed to meet the requirements of Internet of Musical Things applications, but relevant for any IoT scenario. We assess its validity through a practical use case
    corecore