391 research outputs found

    Recent advances in industrial wireless sensor networks towards efficient management in IoT

    Get PDF
    With the accelerated development of Internet-of- Things (IoT), wireless sensor networks (WSN) are gaining importance in the continued advancement of information and communication technologies, and have been connected and integrated with Internet in vast industrial applications. However, given the fact that most wireless sensor devices are resource constrained and operate on batteries, the communication overhead and power consumption are therefore important issues for wireless sensor networks design. In order to efficiently manage these wireless sensor devices in a unified manner, the industrial authorities should be able to provide a network infrastructure supporting various WSN applications and services that facilitate the management of sensor-equipped real-world entities. This paper presents an overview of industrial ecosystem, technical architecture, industrial device management standards and our latest research activity in developing a WSN management system. The key approach to enable efficient and reliable management of WSN within such an infrastructure is a cross layer design of lightweight and cloud-based RESTful web service

    Surfing the Internet-of-Things: lightweight access and control of wireless sensor networks using industrial low power protocols

    Get PDF
    Internet-of-Things (IoT) is emerging to play an important role in the continued advancement of information and communication technologies. To accelerate industrial application developments, the use of web services for networking applications is seen as important in IoT communications. In this paper, we present a RESTful web service architecture for energy-constrained wireless sensor networks (WSNs) to enable remote data collection from sensor devices in WSN nodes. Specifically, we consider both IPv6 protocol support in WSN nodes as well as an integrated gateway solution to allow any Internet clients to access these nodes.We describe the implementation of a prototype system, which demonstrates the proposed RESTful approach to collect sensing data from a WSN. A performance evaluation is presented to illustrate the simplicity and efficiency of our proposed scheme

    Efficient vertical handover in heterogeneous low-power wide-area networks

    Get PDF
    As the Internet of Things (IoT) continues to expand, the need to combine communication technologies to cope with the limitations of one another and to support more diverse requirements will proceed to increase. Consequently, we started to see IoT devices being equipped with multiple radio technologies to connect to different networks over time. However, the detection of the available radio technologies in an energy-efficient way for devices with limited battery capacity and processing power has not yet been investigated. As this is not a straightforward task, a novel approach in such heterogeneous networks is required. This article analyzes different low-power wide-area network technologies and how they can be integrated in such a heterogeneous system. Our contributions are threefold. First, an optimal protocol stack for a constrained device with access to multiple communication technologies is put forward to hide the underlying complexity for the application layer. Next, the architecture to hide the complexity of a heterogeneous network is presented. Finally, it is demonstrated how devices with limited processing power and battery capacity can have access to higher bandwidth networks combined with longer range networks and on top are able to save energy compared to their homogeneous counterparts, by measuring the impact of the novel vertical handover algorithm

    A Lightweight Attribute-Based Access Control System for IoT.

    Get PDF
    The evolution of the Internet of things (IoT) has made a significant impact on our daily and professional life. Home and office automation are now even easier with the implementation of IoT. Multiple sensors are connected to monitor the production line, or to control an unmanned environment is now a reality. Sensors are now smart enough to sense an environment and also communicate over the Internet. That is why, implementing an IoT system within the production line, hospitals, office space, or at home could be beneficial as a human can interact over the Internet at any time to know the environment. 61% of International Data Corporation (IDC) surveyed organizations are actively pursuing IoT initiatives, and 6.8% of the average IT budgets is also being allocated to IoT initiatives. However, the security risks are still unknown, and 34% of respondents pointed out that data safety is their primary concern [1]. IoT sensors are being open to the users with portable/mobile devices. These mobile devices have enough computational power and make it di cult to track down who is using the data or resources. That is why this research focuses on proposing a dynamic access control system for portable devices in IoT environment. The proposed architecture evaluates user context information from mobile devices and calculates trust value by matching with de ned policies to mitigate IoT risks. The cloud application acts as a trust module or gatekeeper that provides the authorization access to READ, WRITE, and control the IoT sensor. The goal of this thesis is to offer an access control system that is dynamic, flexible, and lightweight. This proposed access control architecture can secure IoT sensors as well as protect sensor data. A prototype of the working model of the cloud, mobile application, and sensors is developed to prove the concept and evaluated against automated generated web requests to measure the response time and performance overhead. The results show that the proposed system requires less interaction time than the state-of-the-art methods
    • …
    corecore