603 research outputs found

    Techniques for the allocation of resources under uncertainty

    Get PDF
    L’allocation de ressources est un problème omniprésent qui survient dès que des ressources limitées doivent être distribuées parmi de multiples agents autonomes (e.g., personnes, compagnies, robots, etc). Les approches standard pour déterminer l’allocation optimale souffrent généralement d’une très grande complexité de calcul. Le but de cette thèse est de proposer des algorithmes rapides et efficaces pour allouer des ressources consommables et non consommables à des agents autonomes dont les préférences sur ces ressources sont induites par un processus stochastique. Afin d’y parvenir, nous avons développé de nouveaux modèles pour des problèmes de planifications, basés sur le cadre des Processus Décisionnels de Markov (MDPs), où l’espace d’actions possibles est explicitement paramétrisés par les ressources disponibles. Muni de ce cadre, nous avons développé des algorithmes basés sur la programmation dynamique et la recherche heuristique en temps-réel afin de générer des allocations de ressources pour des agents qui agissent dans un environnement stochastique. En particulier, nous avons utilisé la propriété acyclique des créations de tâches pour décomposer le problème d’allocation de ressources. Nous avons aussi proposé une stratégie de décomposition approximative, où les agents considèrent des interactions positives et négatives ainsi que les actions simultanées entre les agents gérants les ressources. Cependant, la majeure contribution de cette thèse est l’adoption de la recherche heuristique en temps-réel pour l’allocation de ressources. À cet effet, nous avons développé une approche basée sur la Q-décomposition munie de bornes strictes afin de diminuer drastiquement le temps de planification pour formuler une politique optimale. Ces bornes strictes nous ont permis d’élaguer l’espace d’actions pour les agents. Nous montrons analytiquement et empiriquement que les approches proposées mènent à des diminutions de la complexité de calcul par rapport à des approches de planification standard. Finalement, nous avons testé la recherche heuristique en temps-réel dans le simulateur SADM, un simulateur d’allocation de ressource pour une frégate.Resource allocation is an ubiquitous problem that arises whenever limited resources have to be distributed among multiple autonomous entities (e.g., people, companies, robots, etc). The standard approaches to determine the optimal resource allocation are computationally prohibitive. The goal of this thesis is to propose computationally efficient algorithms for allocating consumable and non-consumable resources among autonomous agents whose preferences for these resources are induced by a stochastic process. Towards this end, we have developed new models of planning problems, based on the framework of Markov Decision Processes (MDPs), where the action sets are explicitly parameterized by the available resources. Given these models, we have designed algorithms based on dynamic programming and real-time heuristic search to formulating thus allocations of resources for agents evolving in stochastic environments. In particular, we have used the acyclic property of task creation to decompose the problem of resource allocation. We have also proposed an approximative decomposition strategy, where the agents consider positive and negative interactions as well as simultaneous actions among the agents managing the resources. However, the main contribution of this thesis is the adoption of stochastic real-time heuristic search for a resource allocation. To this end, we have developed an approach based on distributed Q-values with tight bounds to diminish drastically the planning time to formulate the optimal policy. These tight bounds enable to prune the action space for the agents. We show analytically and empirically that our proposed approaches lead to drastic (in many cases, exponential) improvements in computational efficiency over standard planning methods. Finally, we have tested real-time heuristic search in the SADM simulator, a simulator for the resource allocation of a platform

    Engineering coordination : eine Methodologie für die Koordination von Planungssystemen

    Get PDF
    Planning problems, like real-world planning and scheduling problems, are complex tasks. As an efficient strategy for handing such problems is the ‘divide and conquer’ strategy has been identified. Each sub problem is then solved independently. Typically the sub problems are solved in a linear way. This approach enables the generation of sub-optimal plans for a number of real world problems. Today, this approach is widely accepted and has been established e.g. in the organizational structure of companies. But existing interdependencies between the sub problems are not sufficiently regarded, as each problem are solved sequentially and no feedback information is given. The field of coordination has been covered by a number of academic fields, like the distributed artificial intelligence, economics or game theory. An important result is, that there exist no method that leads to optimal results in any given coordination problem. Consequently, a suitable coordination mechanism has to be identified for each single coordination problem. Up to now, there exists no process for the selection of a coordination mechanism, neither in the engineering of distributed systems nor in agent oriented software engineering. Within the scope of this work the ECo process is presented, that address exactly this selection problem. The Eco process contains the following five steps. • Modeling of the coordination problem • Defining the coordination requirements • Selection / Design of the coordination mechanism • Implementation • Evaluation Each of these steps is detailed in the thesis. The modeling has to be done to enable a systemic analysis of the coordination problem. Coordination mechanisms have to respect the given situation and the context in which the coordination has to be done. The requirements imposed by the context of the coordination problem are formalized in the coordination requirements. The selection process is driven by these coordination requirements. Using the requirements as a distinction for the selection of a coordination mechanism is a central aspect of this thesis. Additionally these requirements can be used for documentation of design decisions. Therefore, it is reasonable to annotate the coordination mechanisms with the coordination requirements they fulfill and fail to ease the selection process, for a given situation. For that reason we present a new classification scheme for coordination methods within this thesis that classifies existing coordination methods according to a set of criteria that has been identified as important for the distinction between different coordination methods. The implementation phase of the ECo process is supported by the CoPS process and CoPS framework that has been developed within this thesis, as well. The CoPS process structures the design making that has to be done during the implementation phase. The CoPS framework provides a set of basic features software agents need for realizing the selected coordination method. Within the CoPS process techniques are presented for the design and implementation of conversations between agents that can be applied not only within the context of the coordination of planning systems, but for multiagent systems in general. The ECo-CoPS approach has been successfully validated in two case studies from the logistic domain.Reale Planungsprobleme, wie etwa die Produktionsplanung in einer Supply Chain, sind komplex Planungsprobleme. Eine übliche Strategie derart komplexen Problemen zu lösen, ist es diese Probleme in einfachere Teilprobleme zu zerlegen und diese dann separat, meist sequentiell, zu lösen (divide-and-conquer Strategie). Dieser Ansatz erlaubt die Erstellung von (suboptimalen) Plänen für eine Reihe von realen Anwendungen, und ist heute in den Organisationsstrukturen von größeren Unternehmen institutionalisiert worden. Allerdings werden Abhängigkeiten zwischen den Teilproblemen nicht ausreichend berücksichtigt, da die Partialprobleme sequentiell ohne Feedback gelöst werden. Die erstellten Teillösungen müssen deswegen oft nachträglich koordiniert werden. Das Gebiet der Koordination wird in verschiedenen Forschungsgebieten, wie etwa der verteilten Künstlichen Intelligenz, den Wirtschaftswissenschaften oder der Spieltheorie untersucht. Ein zentrales Ergebnis dieser Forschung ist, dass es keinen für alle Situationen geeigneten Koordinationsmechanismus gibt. Es stellt sich also die Aufgabe aus den zahlreichen vorgeschlagenen Koordinationsmechanismen eine Auswahl zu treffen, die für die aktuelle Situation den geeigneten Mechanismus identifiziert. Für die Auswahl eines solchen Mechanismus existiert bisher jedoch kein strukturiertes Verfahren für die Entwicklung von verteilten Systems und insbesondere im Bereich der Agenten orientierter Softwareentwicklung. Im Rahmen dieser Arbeit wird genau hierfür ein Verfahren vorgestellt, der ECo-Prozess. Mit Hilfe dieses Prozesses wird der Auswahlprozess in die folgenden Schritte eingeteilt: • Modellierung der Problemstellung und des relevante Kontextes • Formulierung von Anforderungen an einen Koordinationsmechanismus (coordination requirements) • Auswahl/Entwurf eines Koordinationsmechanismuses • Implementierung des Koordinationsverfahrens • Evaluation des Koordinationsverfahrens Diese Schritte werden im Rahmen der vorliegenden Arbeit detailliert beschrieben. Die Modellierung der Problemstellung stellt dabei den ersten Schritt dar, um die Problemstellung analytisch zugänglich zu machen. Koordinationsverfahren müssen die Gegebenheiten, den Kontext und die Domäne, in der sie angewendet werden sollen hinreichend berücksichtigen um anwendbar zu sein. Dieses kann über Anforderungen an den Koordinationsprozess formalisiert werden. Der von den Anforderungen getrieben Auswahlprozess ist ein Kernstück der hier vorgestellten Arbeit. Durch die Formulierung der Anforderungen und der Annotation eines Koordinationsmechanismus bezüglich der erfüllten und nicht erfüllten Anforderungen werden die Motive für Designentscheidungen dieses Verfahren expliziert. Wenn Koordinationsverfahren anhand dieser Anforderungen klassifiziert werden können, ist es weiterhin möglich den Auswahlprozess (unabhängig vom ECo-Ansatz) zu vereinfachen und zu beschleunigen. Im Rahmen dieser Arbeit wird eine Klassifikation von Koordinationsansätzen anhand von allgemeinen Kriterien vorgestellt, die die Identifikation von geeigneten Kandidaten erleichtern. Diese Kandidaten können dann detaillierter untersucht werden. Dies wurde in den vorgestellten Fallstudien erfolgreich demonstriert. Für die Unterstützung der Implementierung eines Koordinationsansatzes wird in dieser Arbeit zusätzlich der CoPS Prozess vorgeschlagen. Der CoPS Prozess erlaubt einen ganzheitlichen systematischen Ansatz für den Entwurf und die Implementierung eines Koordinationsverfahrens. Unterstürzt wird der CoPS Prozess durch das CoPS Framework, das die Implementierung erleichtert, indem es als eine Plattform mit Basisfunktionalität eines Agenten bereitstellt, der für die Koordination von Planungssystemen verantwortlich ist. Im Rahmen des CoPS Verfahrens werden Techniken für den Entwurf und die Implementierung von Konversation im Kontext des agenten-orientiertem Software Engineerings ausführlich behandelt. Der Entwurf von Konversationen geht dabei weit über Fragestellung der Formatierung von Nachrichten hinaus, wie dies etwa in den FIPA Standards geregelt ist, und ist für die Implementierung von agentenbasierten Systemen im Allgemeinen von Bedeutung. Die Funktionsweise des ECo-CoPS Ansatzes wird anhand von zweierfolgreich durchgeführten Fallstudien aus dem betriebswirtschaftlichen Kontext vorgestellt

    Metaphor-based negotiation and its application in AGV movement planning

    Get PDF
    The theme of this thesis is "metaphor-based negotiation". By metaphor-based negotiation I mean a category of approaches for problem-solving in Distributed Artificial Intelligence (DAI) that mimic some aspects of human negotiation behaviour. The research in this dissertation is divided into two closely related parts. Cooperative interaction among agents in a multiagent system (MAS) is discussed in general, and the discussion leads to a formal definition of metaphor-based negotiation. Then, as a specific application, a "spring-based" computational model for metaphor-based negotiation is developed as an approach to solving movement planning, specifically the AGV scheduling problem (AGVSP) — determing the timings of AGVs' activities, of automated guided vehicles (AGVs) in a factory.By formally addressing the multi-agent cooperative interaction problem and assuming that agents in a MAS are rational, benevolent and fully informed, an initial strategy set of cooperative interaction can be reduced to a strategy set by eliminating strategies that are irrational in a group sense. However, it is proved in this dissertation that, in the remaining strategy set, no unique strategy can be found that is acceptable to all agents according their individual preferences. More specifically, in this smaller strategy set, if one agent moves from one strategy to another in an attempt to better its individual goal achievement, then there is at least one agent whose goal achievement will be negatively affected by such a move. So, the cooperative interaction problem can only be partially solved if no further knowledge is given to those agents. The idea of a common sense principle is introduced in this dissertation to overcome the deficiencies of the assumptions of rationality, benevolence and full-informedness.In reality, the assumption of full-informedness of agents may not be practical. Communication is needed for agents to (1) exchange their local problem solving information, and (2) exchange proposals for global problem solving, when their views are in conflict. Based on the discussion of cooperative interaction, a formal definition of metaphorbased negotiation is proposed to formally indicate what is a proposal and what is the condition for accepting a proposal from another agent. In this definition, the common sense principle is one of the most important features, not found in definitions of negotiation available so far in the literature, which guides agents to find an agreement when negotiation is running into difficulties.The AGVSP involves timing activities for each AGV in a AGV-based factory. The AGVSP is naturally distributed: the whole problem can be easily divided into several subproblems each of which involves timing of activities of one AGV. Therefore, it is intuitively straightforward for us to seek DAI approaches to solving the AGVSP. In spired by Kwa's Iterative Negotiation Model [Kwa 88b] [Kwa 88a] for the AGVSP, we developed a spring-based (metaphor-based) negotiation model for the AGVSP to overcome some vital problems in Kwa's model. The idea of the spring-based negotiation model is described below:The AGVSP can be regarded as a Distributed Constraint Satisfaction Problem (DCSP) and solved in a MAS. Each agent in the MAS is designed to solve a subproblem — a local scheduling problem which is a small Constraint Satisfaction Problem (CSP). Conflicts exist when intra-agent constraints or inter-agent constraints are violated. These constraints can be classified into hard constraints— those that can not be relaxed at the agent level unless the system designer permits (e.g., by providing an arbitrator), and soft constraints — those that can be relaxed at the agent level when necessary. When agents are in conflict, i.e, when some inter-agent constraints are violated (or say, when one agent's timings of its activities overlap those of some other agents), these agents involved will resolve the conflicts through a (metaphor-based) negotiation procedure in which conflicts will be gradually resolved by each agent's relaxation of its intra-agent constraints, i.e, by yielding some amount of its initially allocated resources to other agents or by shifting its initially allocated resources. The negotiation can be viewed as a process of exchanging proposals (of cooperative strategies) between conflicting agents, where a cooperative strategy is a possible resolution to a conflict according to the viewpoint of the proposing agent. However, since agents are designed to be rational, each agent that is involved in the conflicts will try hard to relax its intra-agent constraints as little as possible. Further, it is reasonably acceptable that the more an intra-agent constraint has been relaxed the less the respective agent is willing to relax it further. This feature can be modeled by a spring — the more it has been compressed the harder it is to compress it further. Based on this inspiration, a spring-based computational model of metaphor-based negotiation is proposed: each agent's local schedule is represented by a local spring network in which each spring element represents a soft intra-agent constraint. Relaxation of an intra-agent constraint is likened to a spring being compressed by external forces from other agents. As a consequence, the compressed spring will also show a reacting force upon those compressing agents. An agreement will be reached when those forces and reacting forces are balanced. This is the common sense principle in the spring-based negotiation. The model solves some key issues, e.g., how to select negotiation techniques and skills during the process of negotiation, that have not been solved by Kwa's iterative negotiation model. Some experimental evidence of the value of this model is presented

    Holonic multi-agent systems

    Get PDF
    A holonic multi-agent paradigm is proposed, where agents give up parts of their autonomy and merge into a super-agent"(a holon), that acts - when seen from the outside - just as a single agent again. We explore the spectrum of this new paradigm, ranging from definitorial issues over classification of possible application domains, an algebraic characterization of the merge operation, to implementational aspects: We propose algorithms for holon formation and on-line re-configuration. Based on some general criteria for the distinction between holonic and non-holonic domains, we examine domains suitable for holonic agents and sketch the implementation of holonic agents in these scenarios. Finally, a case study of a holonic agent system is presented in detail: TELETRUCK system is a fleet management system in the transportation domain

    Design for manufacturability : a feature-based agent-driven approach

    Get PDF

    Reactive plan execution in multi-agent environments

    Full text link
    [ES] Uno de los desafı́os de la robótica es desarrollar sistemas de control capaces de obtener rápidamente respuestas adecuadas e inteligentes para los cambios constantes que tienen lugar en entornos dinámicos. Esta respuesta debe ofrecerse almomento con el objetivo de reanudar la ejecución del plan siempre que se produzca un fallo en el mismo.El término planificación reactiva aborda todos los mecanismos que, directa o indirectamente, promueven la resolución de fallos durante la ejecución del plan. Los sistemas de planificación reactiva funcionan bajo un enfoque de planificación y ejecución continua, es decir, se intercala planificación y ejecución en entornos dinámicos. Muchas de las investigaciones actuales se centran en desarrollar planificadores reactivos que trabajan en escenarios de un único agente para recuperarse rápidamente de los fallos producidos durante la ejecución del plan, pero, si esto no es posible, pueden requerirse arquitecturas de múltiples agentes y métodos de recuperación más complejos donde varios agentes puedan participar para solucionar el fallo. Por lo tanto, los sistemas de planificación y ejecución continua generalmente generan soluciones para un solo agente. La complejidad de establecer comunicaciones entre los agentes en entornos dinámicos y con restricciones de tiempo ha desanimado a los investigadores a implementar soluciones reactivas donde colaboren varios agentes. En línea con esta investigación, la presente tesis doctoral intenta superar esta brecha y presenta un modelo de ejecución y planificación reactiva multiagente que realiza un seguimiento de la ejecución de un agente para reparar los fallos con ayuda de otros agentes. En primer lugar, proponemos una arquitectura que comprende un modelo general reactivo de planificación y ejecución que otorga a un agente capacidades de monitorización y ejecución. El modelo también incorpora un planificador reactivo que proporciona al agente respuestas rápidas para recuperarse de los fallos que se pueden producir durante la ejecución del plan. Por lo tanto, la misión de un agente de ejecución es monitorizar, ejecutar y reparar un plan, si ocurre un fallo durante su ejecución. El planificador reactivo está construido sobre un proceso de busqueda limitada en el tiempo que busca soluciones de recuperación para posibles fallos que pueden ocurrir. El agente genera los espacios de búsqueda en tiempo de ejecución con una construcción iterativa limitada en el tiempo que garantiza que el modelo siempre tendrá un espacio de búsqueda disponible para atender un fallo inmediato del plan. Por lo tanto, la única operación que debe hacerse es buscar en el espacio de búsqueda hasta que se encuentre una solución de recuperación. Evaluamos el rendimiento y la reactividad de nuestro planificador reactivo mediante la realización de dos experimentos. Evaluamos la reactividad del planificador para construir espacios de búsqueda dentro de un tiempo disponible dado, asi como támbien, evaluamos el rendimiento y calidad de encontrar soluciones con otros dos métodos deliberativos de planificación. Luego de las investigaciones de un solo agente, propusimos extender el modelo a un contexto de múltiples agentes para la reparación colaborativa donde al menos dos agentes participan en la solución final. El objetivo era idear un modelo de ejecución y planificación reactiva multiagente que garantice el flujo continuo e ininterrumpido de los agentes de ejecución. El modelo reactivo multiagente proporciona un mecanismo de colaboración para reparar una tarea cuando un agente no puede reparar la falla por sí mismo. Para evaluar nuestro sistema, diseñamos diferentes situaciones en tres dominios de planificación del mundo real. Finalmente, el documento presenta algunas conclusiones y también propone futuras lı́neas de investigación posibles.[CA] Un dels desafiaments de la robòtica és desenvolupar sistemes de control capaços d'obtindre ràpidament respostes adequades i intel·ligents per als canvis constants que tenen lloc en entorns dinàmics. Aquesta resposta ha d'oferir-se al moment amb l'objectiu de reprendre l'execució del pla sempre que es produı̈sca una fallada en aquest. El terme planificació reactiva aborda tots els mecanismes que, directa o indirectament, promouen la resolució de fallades durant l'execució del pla. Els sistemes de planificació reactiva funcionen sota un enfocament de planificació i execució contı́nua, és a dir, s'intercala planificació i execució en entorns dinàmics. Moltes de les investigacions actuals se centren en desenvolupar planificadors reactius que treballen en escenaris d'un únic agent per a recuperar-se ràpidament de les fallades produı̈des durant l'execució del pla, però, si això no és possible, poden requerir-se arquitectures de múltiples agents i mètodes de recuperació més complexos on diversos agents puguen participar per a solucionar la fallada. Per tant, els sistemes de planificació i execució contı́nua generalment generen solucions per a un sol agent. La complexitat d'establir comunicacions entre els agents en entorns dinàmics i amb restriccions de temps ha desanimat als investigadors a implementar solucions reactives on col·laboren diversos agents. En lı́nia amb aquesta investigació, la present tesi doctoral intenta superar aquesta bretxa i presenta un model d'execució i planificació reactiva multiagent que realitza un seguiment de l'execució d'un agent per a reparar les fallades amb ajuda d'altres agents. En primer lloc, proposem una arquitectura que comprén un model general reactiu de planificació i execució que atorga a un agent capacitats de monitoratge i execució. El model també incorpora un planificador reactiu que proporciona a l'agent respostes ràpides per a recuperar-se de les fallades que es poden produir durant l'execució del pla. Per tant, la missió d'un agent d'execució és monitorar, executar i reparar un pla, si ocorre una fallada durant la seua execució. El planificador reactiu està construı̈t sobre un procés de cerca limitada en el temps que busca solucions de recuperació per a possibles fallades que poden ocórrer. L'agent genera els espais de cerca en temps d'execució amb una construcció iterativa limitada en el temps que garanteix que el model sempre tindrà un espai de cerca disponible per a atendre una fallada immediata del pla. Per tant, l'única operació que ha de fer-se és buscar en l'espai de cerca fins que es trobe una solució de recuperació. Avaluem el rendiment i la reactivitat del nostre planificador reactiu mitjançant la realització de dos experiments. Avaluem la reactivitat del planificador per a construir espais de cerca dins d'un temps disponible donat, aixı́ com també, avaluem el rendiment i qualitat de trobar solucions amb altres dos mètodes deliberatius de planificació. Després de les investigacions d'un sol agent, vam proposar estendre el model a un context de múltiples agents per a la reparació col·laborativa on almenys dos agents participen en la solució final. L'objectiu era idear un model d'execució i planificació reactiva multiagent que garantisca el flux continu i ininterromput dels agents d'execució. El model reactiu multiagent proporciona un mecanisme de col·laboració per a reparar una tasca quan un agent no pot reparar la falla per si mateix. Explota les capacitats de planificació reactiva dels agents en temps d'execució per a trobar una solució en la qual dos agents participen junts, evitant aixı́ que els agents hagen de recórrer a mecanismes deliberatius. Per a avaluar el nostre sistema, dissenyem diferents situacions en tres dominis de planificació del món real. Finalment, el document presenta algunes conclusions i tam[EN] One of the challenges of robotics is to develop control systems capable of quickly obtaining intelligent, suitable responses for the regularly changing that take place in dynamic environments. This response should be offered at runtime with the aim of resume the plan execution whenever a failure occurs. The term reactive planning addresses all the mechanisms that, directly or indirectly, promote the resolution of failures during the plan execution. Reactive planning systems work under a continual planning and execution approach, i.e., interleaving planning and execution in dynamic environments. Most of the current research puts the focus on developing reactive planning system that works on single-agent scenarios to recover quickly plan failures, but, if this is not possible, we may require more complex multi-agent architectures where several agents may participate to solve the failures. Therefore, continual planning and execution systems have usually conceived solutions for individual agents. The complexity of establishing agent communications in dynamic and time-restricted environments has discouraged researchers from implementing multi-agent collaborative reactive solutions. In line with this research, this Ph.D. dissertation attempts to overcome this gap and presents a multi-agent reactive planning and execution model that keeps track of the execution of an agent to recover from incoming failures. Firstly, we propose an architecture that comprises a general reactive planning and execution model that endows a single-agent with monitoring and execution capabilities. The model also comprises a reactive planner module that provides the agent with fast responsiveness to recover from plan failures. Thus, the mission of an execution agent is to monitor, execute and repair a plan, if a failure occurs during the plan execution. The reactive planner builds on a time-bounded search process that seeks a recovery plan in a solution space that encodes potential fixes for a failure. The agent generates the search space at runtime with an iterative time-bounded construction that guarantees that a solution space will always be available for attending an immediate plan failure. Thus, the only operation that needs to be done when a failure occurs is to search over the solution space until a recovery path is found. We evaluated theperformance and reactiveness of our single-agent reactive planner by conducting two experiments. We have evaluated the reactiveness of the single-agent reactive planner when building solution spaces within a given time limit as well as the performance and quality of the found solutions when compared with two deliberative planning methods. Following the investigations for the single-agent scenario, our proposal is to extend the single model to a multi-agent context for collaborative repair where at least two agents participate in the final solution. The aim is to come up with a multi-agent reactive planning and execution model that ensures the continuous and uninterruptedly flow of the execution agents. The multi-agent reactive model provides a collaborative mechanism for repairing a task when an agent is not able to repair the failure by itself. It exploits the reactive planning capabilities of the agents at runtime to come up with a solution in which two agents participate together, thus preventing agents from having to resort to a deliberative solution. Throughout the thesis document, we motivate the application of the proposed model to the control of autonomous space vehicles in a Planetary Mars scenario. To evaluate our system, we designed different problem situations from three real-world planning domains. Finally, the document presents some conclusions and also outlines future research directions.Gúzman Álvarez, CA. (2019). Reactive plan execution in multi-agent environments [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/12045

    Model for WCET prediction, scheduling and task allocation for emergent agent-behaviours in real-time scenarios

    Get PDF
    [ES]Hasta el momento no se conocen modelos de tiempo real específicamente desarrollados para su uso en sistemas abiertos, como las Organizaciones Virtuales de Agentes (OVs). Convencionalmente, los modelos de tiempo real se aplican a sistemas cerrados donde todas las variables se conocen a priori. Esta tesis presenta nuevas contribuciones y la novedosa integración de agentes en tiempo real dentro de OVs. Hasta donde alcanza nuestro conocimiento, éste es el primer modelo específicamente diseñado para su aplicación en OVs con restricciones temporales estrictas. Esta tesis proporciona una nueva perspectiva que combina la apertura y dinamicidad necesarias en una OV con las restricciones de tiempo real. Ésto es una aspecto complicado ya que el primer paradigma no es estricto, como el propio término de sistema abierto indica, sin embargo, el segundo paradigma debe cumplir estrictas restricciones. En resumen, el modelo que se presenta permite definir las acciones que una OV debe llevar a cabo con un plazo concreto, considerando los cambios que pueden ocurrir durante la ejecución de un plan particular. Es una planificación de tiempo real en una OV. Otra de las principales contribuciones de esta tesis es un modelo para el cálculo del tiempo de ejecución en el peor caso (WCET). La propuesta es un modelo efectivo para calcular el peor escenario cuando un agente desea formar parte de una OV y para ello, debe incluir sus tareas o comportamientos dentro del sistema de tiempo real, es decir, se calcula el WCET de comportamientos emergentes en tiempo de ejecución. También se incluye una planificación local para cada nodo de ejecución basada en el algoritmo FPS y una distribución de tareas entre los nodos disponibles en el sistema. Para ambos modelos se usan modelos matemáticos y estadísticos avanzados para crear un mecanismo adaptable, robusto y eficiente para agentes inteligentes en OVs. El desconocimiento, pese al estudio realizado, de una plataforma para sistemas abiertos que soporte agentes con restricciones de tiempo real y los mecanismos necesarios para el control y la gestión de OVs, es la principal motivación para el desarrollo de la plataforma de agentes PANGEA+RT. PANGEA+RT es una innovadora plataforma multi-agente que proporciona soporte para la ejecución de agentes en ambientes de tiempo real. Finalmente, se presenta un caso de estudio donde robots heterogéneos colaboran para realizar tareas de vigilancia. El caso de estudio se ha desarrollado con la plataforma PANGEA+RT donde el modelo propuesto está integrado. Por tanto al final de la tesis, con este caso de estudio se obtienen los resultados y conclusiones que validan el modelo
    corecore