30,642 research outputs found

    Feasibility of diffusion and probabilistic white matter analysis in patients implanted with a deep brain stimulator.

    Get PDF
    Deep brain stimulation (DBS) for Parkinson\u27s disease (PD) is an established advanced therapy that produces therapeutic effects through high frequency stimulation. Although this therapeutic option leads to improved clinical outcomes, the mechanisms of the underlying efficacy of this treatment are not well understood. Therefore, investigation of DBS and its postoperative effects on brain architecture is of great interest. Diffusion weighted imaging (DWI) is an advanced imaging technique, which has the ability to estimate the structure of white matter fibers; however, clinical application of DWI after DBS implantation is challenging due to the strong susceptibility artifacts caused by implanted devices. This study aims to evaluate the feasibility of generating meaningful white matter reconstructions after DBS implantation; and to subsequently quantify the degree to which these tracts are affected by post-operative device-related artifacts. DWI was safely performed before and after implanting electrodes for DBS in 9 PD patients. Differences within each subject between pre- and post-implantation FA, MD, and RD values for 123 regions of interest (ROIs) were calculated. While differences were noted globally, they were larger in regions directly affected by the artifact. White matter tracts were generated from each ROI with probabilistic tractography, revealing significant differences in the reconstruction of several white matter structures after DBS. Tracts pertinent to PD, such as regions of the substantia nigra and nigrostriatal tracts, were largely unaffected. The aim of this study was to demonstrate the feasibility and clinical applicability of acquiring and processing DWI post-operatively in PD patients after DBS implantation. The presence of global differences provides an impetus for acquiring DWI shortly after implantation to establish a new baseline against which longitudinal changes in brain connectivity in DBS patients can be compared. Understanding that post-operative fiber tracking in patients is feasible on a clinically-relevant scale has significant implications for increasing our current understanding of the pathophysiology of movement disorders, and may provide insights into better defining the pathophysiology and therapeutic effects of DBS

    Eye movements in surgery: A literature review

    Get PDF
    With recent advances in eye tracking technology, it is now possible to track surgeons’ eye movements while engaged in a surgical task or when surgical residents practice their surgical skills. Several studies have compared eye movements of surgical experts and novices, developed techniques to assess surgical skill on the basis of eye movements, and examined the role of eye movements in surgical training. We here provide an overview of these studies with a focus on the methodological aspects. We conclude that the different studies of eye movements in surgery suggest that the recording of eye movements may be beneficial both for skill assessment and training purposes, although more research will be needed in this field

    A new perspective for the training assessment: Machine learning-based neurometric for augmented user's evaluation

    Get PDF
    Inappropriate training assessment might have either high social costs and economic impacts, especially in high risks categories, such as Pilots, Air Traffic Controllers, or Surgeons. One of the current limitations of the standard training assessment procedures is the lack of information about the amount of cognitive resources requested by the user for the correct execution of the proposed task. In fact, even if the task is accomplished achieving the maximum performance, by the standard training assessment methods, it would not be possible to gather and evaluate information about cognitive resources available for dealing with unexpected events or emergency conditions. Therefore, a metric based on the brain activity (neurometric) able to provide the Instructor such a kind of information should be very important. As a first step in this direction, the Electroencephalogram (EEG) and the performance of 10 participants were collected along a training period of 3 weeks, while learning the execution of a new task. Specific indexes have been estimated from the behavioral and EEG signal to objectively assess the users' training progress. Furthermore, we proposed a neurometric based on a machine learning algorithm to quantify the user's training level within each session by considering the level of task execution, and both the behavioral and cognitive stabilities between consecutive sessions. The results demonstrated that the proposed methodology and neurometric could quantify and track the users' progresses, and provide the Instructor information for a more objective evaluation and better tailoring of training programs. © 2017 Borghini, Aricò, Di Flumeri, Sciaraffa, Colosimo, Herrero, Bezerianos, Thakor and Babiloni

    Real-Time Human Motion Capture with Multiple Depth Cameras

    Full text link
    Commonly used human motion capture systems require intrusive attachment of markers that are visually tracked with multiple cameras. In this work we present an efficient and inexpensive solution to markerless motion capture using only a few Kinect sensors. Unlike the previous work on 3d pose estimation using a single depth camera, we relax constraints on the camera location and do not assume a co-operative user. We apply recent image segmentation techniques to depth images and use curriculum learning to train our system on purely synthetic data. Our method accurately localizes body parts without requiring an explicit shape model. The body joint locations are then recovered by combining evidence from multiple views in real-time. We also introduce a dataset of ~6 million synthetic depth frames for pose estimation from multiple cameras and exceed state-of-the-art results on the Berkeley MHAD dataset.Comment: Accepted to computer robot vision 201

    Image-guided port placement for minimally invasive cardiac surgery

    Get PDF
    Minimally invasive surgery is becoming popular for a number of interventions. Use of robotic surgical systems in coronary artery bypass intervention offers many benefits to patients, but is however limited by remaining challenges in port placement. Choosing the entry ports for the robotic tools has a large impact on the outcome of the surgery, and can be assisted by pre-operative planning and intra-operative guidance techniques. In this thesis, pre-operative 3D computed tomography (CT) imaging is used to plan minimally invasive robotic coronary artery bypass (MIRCAB) surgery. From a patient database, port placement optimization routines are implemented and validated. Computed port placement configurations approximated past expert chosen configurations with an error of 13.7 ±5.1 mm. Following optimization, statistical classification was used to assess patient candidacy for MIRCAB. Various pattern recognition techniques were used to predict MIRCAB success, and could be used in the future to reduce conversion rates to conventional open-chest surgery. Gaussian, Parzen window, and nearest neighbour classifiers all proved able to detect ‘candidate’ and ‘non-candidate’ MIRCAB patients. Intra-operative registration and laser projection of port placements was validated on a phantom and then evaluated in four patient cases. An image-guided laser projection system was developed to map port placement plans from pre-operative 3D images. Port placement mappings on the phantom setup were accurate with an error of 2.4 ± 0.4 mm. In the patient cases, projections remained within 1 cm of computed port positions. Misregistered port placement mappings in human trials were due mainly to the rigid-body registration assumption and can be improved by non-rigid techniques. Overall, this work presents an integrated approach for: 1) pre-operative port placement planning and classification of incoming MIRCAB patients; and 2) intra-operative guidance of port placement. Effective translation of these techniques to the clinic will enable MIRCAB as a more efficacious and accessible procedure

    Sensor actor network modeling utilizing the holonic architectural framework

    Full text link
    This paper discusses the results of utilizing advanced EKM modeling techniques to manage Sensor-Actor networks (SANETs) based upon the Holonic Architectural Framework. EKMs allow a quantitative analysis of an algorithmic artificial neural network process by using an indirect-mapping EKM to self-organize from a given input space to administer SANET routing and clustering functions with a control parameter space. Results demonstrate that in comparison to linear approximation techniques, indirect mapping with EKMs provide fluid control and feedback mechanisms by operating in a continuous sensory control space-thus enabling interactive detection and optimization of events in real-time environments

    Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions
    corecore