36 research outputs found

    The Many Facets of Mediation: A Requirements-driven Approach for Trading-off Mediation Solutions

    Get PDF
    Mediation aims at enabling dynamic composition of multi- ple components by making them interact successfully in order to satisfy given requirements. Through dynamic composition, software systems can adapt their structure and behaviour in dynamic and heterogeneous envi- ronments such as ubiquitous computing environments. This paper pro- vides a review of existing mediation approaches and their key character- istics and limitations. We claim that only a multifaceted approach that brings together and enhances the solutions of mediation from different perspectives is viable in the long term. We discuss how requirements can help identify synergies and trade-offs between these approaches and drive the selection of the appropriate mediation solution. We also highlight the open issues and future research directions in the area

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion

    Design and implementation of a modular controller for robotic machines

    Get PDF
    This research focused on the design and implementation of an Intelligent Modular Controller (IMC) architecture designed to be reconfigurable over a robust network. The design incorporates novel communication, hardware, and software architectures. This was motivated by current industrial needs for distributed control systems due to growing demand for less complexity, more processing power, flexibility, and greater fault tolerance. To this end, three main contributions were made. Most distributed control architectures depend on multi-tier heterogeneous communication networks requiring linking devices and/or complex middleware. In this study, first, a communication architecture was proposed and implemented with a homogenous network employing the ubiquitous Ethernet for both real-time and non real-time communication. This was achieved by a producer-consumer coordination model for real-time data communication over a segmented network, and a client-server model for point-to-point transactions. The protocols deployed use a Time-Triggered (TT) approach to schedule real-time tasks on the network. Unlike other TT approaches, the scheduling mechanism does not need to be configured explicitly when controller nodes are added or removed. An implicit clock synchronization technique was also developed to complement the architecture. Second, a reconfigurable mechanism based on an auto-configuration protocol was developed. Modules on the network use this protocol to automatically detect themselves, establish communication, and negotiate for a desired configuration. Third, the research demonstrated hardware/software co-design as a contribution to the growing discipline of mechatronics. The IMC consists of a motion controller board designed and prototyped in-house, and a Java microcontroller. An IMC is mapped to each machine/robot axis, and an additional IMC can be configured to serve as a real-time coordinator. The entire architecture was implemented in Java, thus reinforcing uniformity, simplicity, modularity, and openness. Evaluation results showed the potential of the flexible controller to meet medium to high performance machining requirements

    Dynamic Connector Synthesis: Principles, Methods, Tools and Assessment

    Get PDF
    CONNECT adopts a revolutionary approach to the seamless networking of digital systems, that is, onthe- fly synthesis of the connectors via which networked systems communicate. Within CONNECT, the role of the WP3 work package is to devise automated and efficient approaches to the synthesis of such emergent connectors, provided the behavioral specification of the components to be connected. Thanks to WP3 scientific and technology development, emergent connectors can be synthesized on the fly as networked systems get discovered, implementing the necessary mediation between networked systems' protocols, from application down to middleware layers. This document being the final report about WP3 achievements, it outlines both: (i) specific contributions over the reporting period, and (ii) overall contributions in the area of automated, on-the-fly protocol mediation, from theory to supporting tool

    Mobilizing the Past for a Digital Future : The Potential of Digital Archaeology

    Get PDF
    Mobilizing the Past is a collection of 20 articles that explore the use and impact of mobile digital technology in archaeological field practice. The detailed case studies present in this volume range from drones in the Andes to iPads at Pompeii, digital workflows in the American Southwest, and examples of how bespoke, DIY, and commercial software provide solutions and craft novel challenges for field archaeologists. The range of projects and contexts ensures that Mobilizing the Past for a Digital Future is far more than a state-of-the-field manual or technical handbook. Instead, the contributors embrace the growing spirit of critique present in digital archaeology. This critical edge, backed by real projects, systems, and experiences, gives the book lasting value as both a glimpse into present practices as well as the anxieties and enthusiasm associated with the most recent generation of mobile digital tools. This book emerged from a workshop funded by the National Endowment for the Humanities held in 2015 at Wentworth Institute of Technology in Boston. The workshop brought together over 20 leading practitioners of digital archaeology in the U.S. for a weekend of conversation. The papers in this volume reflect the discussions at this workshop with significant additional content. Starting with an expansive introduction and concluding with a series of reflective papers, this volume illustrates how tablets, connectivity, sophisticated software, and powerful computers have transformed field practices and offer potential for a radically transformed discipline.https://dc.uwm.edu/arthist_mobilizingthepast/1000/thumbnail.jp
    corecore