29,972 research outputs found

    Unmasking Clever Hans Predictors and Assessing What Machines Really Learn

    Full text link
    Current learning machines have successfully solved hard application problems, reaching high accuracy and displaying seemingly "intelligent" behavior. Here we apply recent techniques for explaining decisions of state-of-the-art learning machines and analyze various tasks from computer vision and arcade games. This showcases a spectrum of problem-solving behaviors ranging from naive and short-sighted, to well-informed and strategic. We observe that standard performance evaluation metrics can be oblivious to distinguishing these diverse problem solving behaviors. Furthermore, we propose our semi-automated Spectral Relevance Analysis that provides a practically effective way of characterizing and validating the behavior of nonlinear learning machines. This helps to assess whether a learned model indeed delivers reliably for the problem that it was conceived for. Furthermore, our work intends to add a voice of caution to the ongoing excitement about machine intelligence and pledges to evaluate and judge some of these recent successes in a more nuanced manner.Comment: Accepted for publication in Nature Communication

    Deep Learning versus Classical Regression for Brain Tumor Patient Survival Prediction

    Full text link
    Deep learning for regression tasks on medical imaging data has shown promising results. However, compared to other approaches, their power is strongly linked to the dataset size. In this study, we evaluate 3D-convolutional neural networks (CNNs) and classical regression methods with hand-crafted features for survival time regression of patients with high grade brain tumors. The tested CNNs for regression showed promising but unstable results. The best performing deep learning approach reached an accuracy of 51.5% on held-out samples of the training set. All tested deep learning experiments were outperformed by a Support Vector Classifier (SVC) using 30 radiomic features. The investigated features included intensity, shape, location and deep features. The submitted method to the BraTS 2018 survival prediction challenge is an ensemble of SVCs, which reached a cross-validated accuracy of 72.2% on the BraTS 2018 training set, 57.1% on the validation set, and 42.9% on the testing set. The results suggest that more training data is necessary for a stable performance of a CNN model for direct regression from magnetic resonance images, and that non-imaging clinical patient information is crucial along with imaging information.Comment: Contribution to The International Multimodal Brain Tumor Segmentation (BraTS) Challenge 2018, survival prediction tas

    Intrinsic Motivation Systems for Autonomous Mental Development

    Get PDF
    Exploratory activities seem to be intrinsically rewarding for children and crucial for their cognitive development. Can a machine be endowed with such an intrinsic motivation system? This is the question we study in this paper, presenting a number of computational systems that try to capture this drive towards novel or curious situations. After discussing related research coming from developmental psychology, neuroscience, developmental robotics, and active learning, this paper presents the mechanism of Intelligent Adaptive Curiosity, an intrinsic motivation system which pushes a robot towards situations in which it maximizes its learning progress. This drive makes the robot focus on situations which are neither too predictable nor too unpredictable, thus permitting autonomous mental development.The complexity of the robot’s activities autonomously increases and complex developmental sequences self-organize without being constructed in a supervised manner. Two experiments are presented illustrating the stage-like organization emerging with this mechanism. In one of them, a physical robot is placed on a baby play mat with objects that it can learn to manipulate. Experimental results show that the robot first spends time in situations which are easy to learn, then shifts its attention progressively to situations of increasing difficulty, avoiding situations in which nothing can be learned. Finally, these various results are discussed in relation to more complex forms of behavioral organization and data coming from developmental psychology. Key words: Active learning, autonomy, behavior, complexity, curiosity, development, developmental trajectory, epigenetic robotics, intrinsic motivation, learning, reinforcement learning, values

    A Winnow-Based Approach to Context-Sensitive Spelling Correction

    Full text link
    A large class of machine-learning problems in natural language require the characterization of linguistic context. Two characteristic properties of such problems are that their feature space is of very high dimensionality, and their target concepts refer to only a small subset of the features in the space. Under such conditions, multiplicative weight-update algorithms such as Winnow have been shown to have exceptionally good theoretical properties. We present an algorithm combining variants of Winnow and weighted-majority voting, and apply it to a problem in the aforementioned class: context-sensitive spelling correction. This is the task of fixing spelling errors that happen to result in valid words, such as substituting "to" for "too", "casual" for "causal", etc. We evaluate our algorithm, WinSpell, by comparing it against BaySpell, a statistics-based method representing the state of the art for this task. We find: (1) When run with a full (unpruned) set of features, WinSpell achieves accuracies significantly higher than BaySpell was able to achieve in either the pruned or unpruned condition; (2) When compared with other systems in the literature, WinSpell exhibits the highest performance; (3) The primary reason that WinSpell outperforms BaySpell is that WinSpell learns a better linear separator; (4) When run on a test set drawn from a different corpus than the training set was drawn from, WinSpell is better able than BaySpell to adapt, using a strategy we will present that combines supervised learning on the training set with unsupervised learning on the (noisy) test set.Comment: To appear in Machine Learning, Special Issue on Natural Language Learning, 1999. 25 page

    Online Human-Bot Interactions: Detection, Estimation, and Characterization

    Full text link
    Increasing evidence suggests that a growing amount of social media content is generated by autonomous entities known as social bots. In this work we present a framework to detect such entities on Twitter. We leverage more than a thousand features extracted from public data and meta-data about users: friends, tweet content and sentiment, network patterns, and activity time series. We benchmark the classification framework by using a publicly available dataset of Twitter bots. This training data is enriched by a manually annotated collection of active Twitter users that include both humans and bots of varying sophistication. Our models yield high accuracy and agreement with each other and can detect bots of different nature. Our estimates suggest that between 9% and 15% of active Twitter accounts are bots. Characterizing ties among accounts, we observe that simple bots tend to interact with bots that exhibit more human-like behaviors. Analysis of content flows reveals retweet and mention strategies adopted by bots to interact with different target groups. Using clustering analysis, we characterize several subclasses of accounts, including spammers, self promoters, and accounts that post content from connected applications.Comment: Accepted paper for ICWSM'17, 10 pages, 8 figures, 1 tabl
    • …
    corecore