116 research outputs found

    Hydrophobicity and Charge Shape Cellular Metabolite Concentrations

    Get PDF
    What governs the concentrations of metabolites within living cells? Beyond specific metabolic and enzymatic considerations, are there global trends that affect their values? We hypothesize that the physico-chemical properties of metabolites considerably affect their in-vivo concentrations. The recently achieved experimental capability to measure the concentrations of many metabolites simultaneously has made the testing of this hypothesis possible. Here, we analyze such recently available data sets of metabolite concentrations within E. coli, S. cerevisiae, B. subtilis and human. Overall, these data sets encompass more than twenty conditions, each containing dozens (28-108) of simultaneously measured metabolites. We test for correlations with various physico-chemical properties and find that the number of charged atoms, non-polar surface area, lipophilicity and solubility consistently correlate with concentration. In most data sets, a change in one of these properties elicits a ∼100 fold increase in metabolite concentrations. We find that the non-polar surface area and number of charged atoms account for almost half of the variation in concentrations in the most reliable and comprehensive data set. Analyzing specific groups of metabolites, such as amino-acids or phosphorylated nucleotides, reveals even a higher dependence of concentration on hydrophobicity. We suggest that these findings can be explained by evolutionary constraints imposed on metabolite concentrations and discuss possible selective pressures that can account for them. These include the reduction of solute leakage through the lipid membrane, avoidance of deleterious aggregates and reduction of non-specific hydrophobic binding. By highlighting the global constraints imposed on metabolic pathways, future research could shed light onto aspects of biochemical evolution and the chemical constraints that bound metabolic engineering efforts

    Amino Acid Metabolic Origin as an Evolutionary Influence on Protein Sequence in Yeast

    Get PDF
    The metabolic cycle of Saccharomyces cerevisiae consists of alternating oxidative (respiration) and reductive (glycolysis) energy-yielding reactions. The intracellular concentrations of amino acid precursors generated by these reactions oscillate accordingly, attaining maximal concentration during the middle of their respective yeast metabolic cycle phases. Typically, the amino acids themselves are most abundant at the end of their precursor’s phase. We show that this metabolic cycling has likely biased the amino acid composition of proteins across the S. cerevisiae genome. In particular, we observed that the metabolic source of amino acids is the single most important source of variation in the amino acid compositions of functionally related proteins and that this signal appears only in (facultative) organisms using both oxidative and reductive metabolism. Periodically expressed proteins are enriched for amino acids generated in the preceding phase of the metabolic cycle. Proteins expressed during the oxidative phase contain more glycolysis-derived amino acids, whereas proteins expressed during the reductive phase contain more respiration-derived amino acids. Rare amino acids (e.g., tryptophan) are greatly overrepresented or underrepresented, relative to the proteomic average, in periodically expressed proteins, whereas common amino acids vary by a few percent. Genome-wide, we infer that 20,000 to 60,000 residues have been modified by this previously unappreciated pressure. This trend is strongest in ancient proteins, suggesting that oscillating endogenous amino acid availability exerted genome-wide selective pressure on protein sequences across evolutionary time

    Cross-platform comparison and visualisation of gene expression data using co-inertia analysis

    Get PDF
    BACKGROUND: Rapid development of DNA microarray technology has resulted in different laboratories adopting numerous different protocols and technological platforms, which has severely impacted on the comparability of array data. Current cross-platform comparison of microarray gene expression data are usually based on cross-referencing the annotation of each gene transcript represented on the arrays, extracting a list of genes common to all arrays and comparing expression data of this gene subset. Unfortunately, filtering of genes to a subset represented across all arrays often excludes many thousands of genes, because different subsets of genes from the genome are represented on different arrays. We wish to describe the application of a powerful yet simple method for cross-platform comparison of gene expression data. Co-inertia analysis (CIA) is a multivariate method that identifies trends or co-relationships in multiple datasets which contain the same samples. CIA simultaneously finds ordinations (dimension reduction diagrams) from the datasets that are most similar. It does this by finding successive axes from the two datasets with maximum covariance. CIA can be applied to datasets where the number of variables (genes) far exceeds the number of samples (arrays) such is the case with microarray analyses. RESULTS: We illustrate the power of CIA for cross-platform analysis of gene expression data by using it to identify the main common relationships in expression profiles on a panel of 60 tumour cell lines from the National Cancer Institute (NCI) which have been subjected to microarray studies using both Affymetrix and spotted cDNA array technology. The co-ordinates of the CIA projections of the cell lines from each dataset are graphed in a bi-plot and are connected by a line, the length of which indicates the divergence between the two datasets. Thus, CIA provides graphical representation of consensus and divergence between the gene expression profiles from different microarray platforms. Secondly, the genes that define the main trends in the analysis can be easily identified. CONCLUSIONS: CIA is a robust, efficient approach to coupling of gene expression datasets. CIA provides simple graphical representations of the results making it a particularly attractive method for the identification of relationships between large datasets

    Integrative omics analysis. A study based on Plasmodium falciparum mRNA and protein data

    Get PDF
    BACKGROUND: Technological improvements have shifted the focus from data generation to data analysis. The availability of large amounts of data from transcriptomics, protemics and metabolomics experiments raise new questions concerning suitable integrative analysis methods. We compare three integrative analysis techniques (co-inertia analysis, generalized singular value decomposition and integrative biclustering) by applying them to gene and protein abundance data from the six life cycle stages of Plasmodium falciparum. Co-inertia analysis is an analysis method used to visualize and explore gene and protein data. The generalized singular value decomposition has shown its potential in the analysis of two transcriptome data sets. Integrative Biclustering applies biclustering to gene and protein data. RESULTS: Using CIA, we visualize the six life cycle stages of Plasmodium falciparum, as well as GO terms in a 2D plane and interpret the spatial configuration. With GSVD, we decompose the transcriptomic and proteomic data sets into matrices with biologically meaningful interpretations and explore the processes captured by the data sets. IBC identifies groups of genes, proteins, GO Terms and life cycle stages of Plasmodium falciparum. We show method-specific results as well as a network view of the life cycle stages based on the results common to all three methods. Additionally, by combining the results of the three methods, we create a three-fold validated network of life cycle stage specific GO terms: Sporozoites are associated with transcription and transport; merozoites with entry into host cell as well as biosynthetic and metabolic processes; rings with oxidation-reduction processes; trophozoites with glycolysis and energy production; schizonts with antigenic variation and immune response; gametocyctes with DNA packaging and mitochondrial transport. Furthermore, the network connectivity underlines the separation of the intraerythrocytic cycle from the gametocyte and sporozoite stages. CONCLUSION: Using integrative analysis techniques, we can integrate knowledge from different levels and obtain a wider view of the system under study. The overlap between method-specific and common results is considerable, even if the basic mathematical assumptions are very different. The three-fold validated network of life cycle stage characteristics of Plasmodium falciparum could identify a large amount of the known associations from literature in only one study

    Development and Engineering of CSαβ Motif for Biomedical Application

    Get PDF

    Structural Cheminformatics for Kinase-Centric Drug Design

    Get PDF
    Drug development is a long, expensive, and iterative process with a high failure rate, while patients wait impatiently for treatment. Kinases are one of the main drug targets studied for the last decades to combat cancer, the second leading cause of death worldwide. These efforts resulted in a plethora of structural, chemical, and pharmacological kinase data, which are collected in the KLIFS database. In this thesis, we apply ideas from structural cheminformatics to the rich KLIFS dataset, aiming to provide computational tools that speed up the complex drug discovery process. We focus on methods for target prediction and fragment-based drug design that study characteristics of kinase binding sites (also called pockets). First, we introduce the concept of computational target prediction, which is vital in the early stages of drug discovery. This approach identifies biological entities such as proteins that may (i) modulate a disease of interest (targets or on-targets) or (ii) cause unwanted side effects due to their similarity to on-targets (off-targets). We focus on the research field of binding site comparison, which lacked a freely available and efficient tool to determine similarities between the highly conserved kinase pockets. We fill this gap with the novel method KiSSim, which encodes and compares spatial and physicochemical pocket properties for all kinases (kinome) that are structurally resolved. We study kinase similarities in the form of kinome-wide phylogenetic trees and detect expected and unexpected off-targets. To allow multiple perspectives on kinase similarity, we propose an automated and production-ready pipeline; user-defined kinases can be inspected complementarily based on their pocket sequence and structure (KiSSim), pocket-ligand interactions, and ligand profiles. Second, we introduce the concept of fragment-based drug design, which is useful to identify and optimize active and promising molecules (hits and leads). This approach identifies low-molecular-weight molecules (fragments) that bind weakly to a target and are then grown into larger high-affinity drug-like molecules. With the novel method KinFragLib, we provide a fragment dataset for kinases (fragment library) by viewing kinase inhibitors as combinations of fragments. Kinases have a highly conserved pocket with well-defined regions (subpockets); based on the subpockets that they occupy, we fragment kinase inhibitors in experimentally resolved protein-ligand complexes. The resulting dataset is used to generate novel kinase-focused molecules that are recombinations of the previously fragmented kinase inhibitors while considering their subpockets. The KinFragLib and KiSSim methods are published as freely available Python tools. Third, we advocate for open and reproducible research that applies FAIR principles ---data and software shall be findable, accessible, interoperable, and reusable--- and software best practices. In this context, we present the TeachOpenCADD platform that contains pipelines for computer-aided drug design. We use open source software and data to demonstrate ligand-based applications from cheminformatics and structure-based applications from structural bioinformatics. To emphasize the importance of FAIR data, we dedicate several topics to accessing life science databases such as ChEMBL, PubChem, PDB, and KLIFS. These pipelines are not only useful to novices in the field to gain domain-specific skills but can also serve as a starting point to study research questions. Furthermore, we show an example of how to build a stand-alone tool that formalizes reoccurring project-overarching tasks: OpenCADD-KLIFS offers a clean and user-friendly Python API to interact with the KLIFS database and fetch different kinase data types. This tool has been used in this thesis and beyond to support kinase-focused projects. We believe that the FAIR-based methods, tools, and pipelines presented in this thesis (i) are valuable additions to the toolbox for kinase research, (ii) provide relevant material for scientists who seek to learn, teach, or answer questions in the realm of computer-aided drug design, and (iii) contribute to making drug discovery more efficient, reproducible, and reusable

    Chapter 34 - Biocompatibility of nanocellulose: Emerging biomedical applications

    Get PDF
    Nanocellulose already proved to be a highly relevant material for biomedical applications, ensued by its outstanding mechanical properties and, more importantly, its biocompatibility. Nevertheless, despite their previous intensive research, a notable number of emerging applications are still being developed. Interestingly, this drive is not solely based on the nanocellulose features, but also heavily dependent on sustainability. The three core nanocelluloses encompass cellulose nanocrystals (CNCs), cellulose nanofibrils (CNFs), and bacterial nanocellulose (BNC). All these different types of nanocellulose display highly interesting biomedical properties per se, after modification and when used in composite formulations. Novel applications that use nanocellulose includewell-known areas, namely, wound dressings, implants, indwelling medical devices, scaffolds, and novel printed scaffolds. Their cytotoxicity and biocompatibility using recent methodologies are thoroughly analyzed to reinforce their near future applicability. By analyzing the pristine core nanocellulose, none display cytotoxicity. However, CNF has the highest potential to fail long-term biocompatibility since it tends to trigger inflammation. On the other hand, neverdried BNC displays a remarkable biocompatibility. Despite this, all nanocelluloses clearly represent a flag bearer of future superior biomaterials, being elite materials in the urgent replacement of our petrochemical dependence

    Pertanika Journal of Tropical Agricultural Science

    Get PDF
    corecore