380 research outputs found

    Co-existence Between a Radar System and a Massive MIMO Wireless Cellular System

    Full text link
    In this paper we consider the uplink of a massive MIMO communication system using 5G New Radio-compliant multiple access, which is to co-exist with a radar system using the same frequency band. We propose a system model taking into account the reverberation (clutter) produced by the radar system at the massive MIMO receiver. Then, we propose several linear receivers for uplink data-detection, ranging by the simple channel-matched beamformer to the zero-forcing and linear minimum mean square error receivers for clutter disturbance rejection. Our results show that the clutter may have a strong effect on the performance of the cellular communication system, but the use of large-scale antenna arrays at the base station is key to provide increased robustness against it, at least as far as data-detection is concerned.Comment: To be presented at 2018 IEEE SPAWC, Kalamata, Greece, June 201

    Massive MIMO is a Reality -- What is Next? Five Promising Research Directions for Antenna Arrays

    Full text link
    Massive MIMO (multiple-input multiple-output) is no longer a "wild" or "promising" concept for future cellular networks - in 2018 it became a reality. Base stations (BSs) with 64 fully digital transceiver chains were commercially deployed in several countries, the key ingredients of Massive MIMO have made it into the 5G standard, the signal processing methods required to achieve unprecedented spectral efficiency have been developed, and the limitation due to pilot contamination has been resolved. Even the development of fully digital Massive MIMO arrays for mmWave frequencies - once viewed prohibitively complicated and costly - is well underway. In a few years, Massive MIMO with fully digital transceivers will be a mainstream feature at both sub-6 GHz and mmWave frequencies. In this paper, we explain how the first chapter of the Massive MIMO research saga has come to an end, while the story has just begun. The coming wide-scale deployment of BSs with massive antenna arrays opens the door to a brand new world where spatial processing capabilities are omnipresent. In addition to mobile broadband services, the antennas can be used for other communication applications, such as low-power machine-type or ultra-reliable communications, as well as non-communication applications such as radar, sensing and positioning. We outline five new Massive MIMO related research directions: Extremely large aperture arrays, Holographic Massive MIMO, Six-dimensional positioning, Large-scale MIMO radar, and Intelligent Massive MIMO.Comment: 20 pages, 9 figures, submitted to Digital Signal Processin

    MU-MIMO Communications with MIMO Radar: From Co-existence to Joint Transmission

    Get PDF
    Beamforming techniques are proposed for a joint multi-input-multi-output (MIMO) radar-communication (RadCom) system, where a single device acts both as a radar and a communication base station (BS) by simultaneously communicating with downlink users and detecting radar targets. Two operational options are considered, where we first split the antennas into two groups, one for radar and the other for communication. Under this deployment, the radar signal is designed to fall into the null-space of the downlink channel. The communication beamformer is optimized such that the beampattern obtained matches the radar's beampattern while satisfying the communication performance requirements. To reduce the optimizations' constraints, we consider a second operational option, where all the antennas transmit a joint waveform that is shared by both radar and communications. In this case, we formulate an appropriate probing beampattern, while guaranteeing the performance of the downlink communications. By incorporating the SINR constraints into objective functions as penalty terms, we further simplify the original beamforming designs to weighted optimizations, and solve them by efficient manifold algorithms. Numerical results show that the shared deployment outperforms the separated case significantly, and the proposed weighted optimizations achieve a similar performance to the original optimizations, despite their significantly lower computational complexity.Comment: 15 pages, 15 figures. This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl
    corecore